Hakodate City Hall, Hakodate, Japan.
Department of Rehabilitation, Hitsujigaoka Hospital, Sapporo, Japan.
J Sports Sci Med. 2020 Nov 19;19(4):714-720. eCollection 2020 Dec.
Jump performance is affected by warm-up intensity and body temperature, but the time course effects have not been thoroughly investigated. The purpose of this study was to investigate time course effects on jump performance after warm-up at different intensities. Nine male athletes (age: 20.9 ± 1.0 years; height: 1.75 ± 0.03 m; weight: 66.4 ± 6.3 kg; mean ± SD) volunteered for this study. The participants performed three warm-ups at different intensities: 15 min at 80% VO max, 15 min at 60% VO max, and no warm-up (control). After each warm-up, counter movement jump (CMJ) height, vastus lateralis temperature, heart rate and subjective fatigue level were measured at three intervals: immediately after warm-up, 10 min after, and 20 min after, respectively. Significant main effects and interactions were found for muscle temperature (intensity: p < 0.01, η = 0.909; time: p < 0.01, η = 0.898; interaction: p < 0.01, η = 0.917). There was a significant increase of muscle temperature from the baseline after warm-up, which lasted for 20 min after warm-up with 80% VO max and 60% VO max (p < 0.01). Muscle temperature was significantly higher with warm-up at 80% VO max than other conditions (P < 0.01). Significant main effects and interactions for CMJ height were found (intensity: p < 0.01, η = 0.762; time: p < 0.01, η = 0.810; interaction: p < 0.01, η = 0.696). Compared with the control conditions, CMJ height after 80% VO max and 60% VO max warm-ups were significantly higher (p < 0.01 and p < 0.05, respectively). CMJ height at 20 min after warm-up was significantly higher for 80% VO max warm-up than for 60% VO max warm-up (p < 0.01). However, CMJ height at 10 min after 60% VO max warm-up was not significantly different from the baseline (p < 0.05). These results showed that both high and moderate intensity warm-up can maintain an increase in muscle temperature for 20 min. Jump performance after high-intensity warm-up was increased for 20 min compared to a moderate intensity warm-up.
跳躍性能受熱身強度和體溫的影響,但時間過程效應尚未得到徹底研究。本研究旨在探討不同強度熱身後跳躍性能的時間過程效應。9 名男性運動員(年齡:20.9±1.0 歲;身高:1.75±0.03 m;體重:66.4±6.3 kg;平均值±SD)自願參加了這項研究。參與者以不同強度進行了三次熱身:80% VO max 持續 15 分鐘,60% VO max 持續 15 分鐘,不熱身(對照組)。每次熱身後,分別在三個間隔立即、10 分鐘和 20 分鐘後測量反動跳(CMJ)高度、股外側肌溫度、心率和主觀疲勞水平。肌肉溫度存在顯著的主效和交互效應(強度:p<0.01,η=0.909;時間:p<0.01,η=0.898;交互作用:p<0.01,η=0.917)。熱身後肌肉溫度從基線開始顯著升高,80% VO max 和 60% VO max 熱身後持續 20 分鐘(p<0.01)。80% VO max 熱身時肌肉溫度明顯高於其他情況(P<0.01)。CMJ 高度存在顯著的主效和交互效應(強度:p<0.01,η=0.762;時間:p<0.01,η=0.810;交互作用:p<0.01,η=0.696)。與對照組相比,80% VO max 和 60% VO max 熱身後的 CMJ 高度均顯著升高(p<0.01 和 p<0.05)。80% VO max 熱身後 20 分鐘的 CMJ 高度顯著高於 60% VO max 熱身(p<0.01)。然而,60% VO max 熱身後 10 分鐘的 CMJ 高度與基線相比沒有顯著差異(p<0.05)。這些結果表明,高強度和中等強度的熱身都可以使肌肉溫度在 20 分鐘內保持升高。與中等強度熱身相比,高強度熱身後的跳躍性能在 20 分鐘內得到提高。