Suppr超能文献

心脏磁共振成像中心血管危险因素的影像组学特征:来自英国生物银行的结果

Radiomics Signatures of Cardiovascular Risk Factors in Cardiac MRI: Results From the UK Biobank.

作者信息

Cetin Irem, Raisi-Estabragh Zahra, Petersen Steffen E, Napel Sandy, Piechnik Stefan K, Neubauer Stefan, Gonzalez Ballester Miguel A, Camara Oscar, Lekadir Karim

机构信息

BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom.

出版信息

Front Cardiovasc Med. 2020 Nov 2;7:591368. doi: 10.3389/fcvm.2020.591368. eCollection 2020.

Abstract

Cardiovascular magnetic resonance (CMR) radiomics is a novel technique for advanced cardiac image phenotyping by analyzing multiple quantifiers of shape and tissue texture. In this paper, we assess, in the largest sample published to date, the performance of CMR radiomics models for identifying changes in cardiac structure and tissue texture due to cardiovascular risk factors. We evaluated five risk factor groups from the first 5,065 UK Biobank participants: hypertension ( = 1,394), diabetes ( = 243), high cholesterol ( = 779), current smoker ( = 320), and previous smoker ( = 1,394). Each group was randomly matched with an equal number of healthy comparators (without known cardiovascular disease or risk factors). Radiomics analysis was applied to short axis images of the left and right ventricles at end-diastole and end-systole, yielding a total of 684 features per study. Sequential forward feature selection in combination with machine learning (ML) algorithms (support vector machine, random forest, and logistic regression) were used to build radiomics signatures for each specific risk group. We evaluated the degree of separation achieved by the identified radiomics signatures using area under curve (AUC), receiver operating characteristic (ROC), and statistical testing. Logistic regression with L1-regularization was the optimal ML model. Compared to conventional imaging indices, radiomics signatures improved the discrimination of risk factor vs. healthy subgroups as assessed by AUC [diabetes: 0.80 vs. 0.70, hypertension: 0.72 vs. 0.69, high cholesterol: 0.71 vs. 0.65, current smoker: 0.68 vs. 0.65, previous smoker: 0.63 vs. 0.60]. Furthermore, we considered clinical interpretation of risk-specific radiomics signatures. For hypertensive individuals and previous smokers, the surface area to volume ratio was smaller in the risk factor vs. healthy subjects; perhaps reflecting a pattern of global concentric hypertrophy in these conditions. In the diabetes subgroup, the most discriminatory radiomics feature was the median intensity of the myocardium at end-systole, which suggests a global alteration at the myocardial tissue level. This study confirms the feasibility and potential of CMR radiomics for deeper image phenotyping of cardiovascular health and disease. We demonstrate such analysis may have utility beyond conventional CMR metrics for improved detection and understanding of the early effects of cardiovascular risk factors on cardiac structure and tissue.

摘要

心血管磁共振(CMR)影像组学是一种通过分析形状和组织纹理的多个量化指标对心脏图像进行高级表型分析的新技术。在本文中,我们在迄今为止已发表的最大样本中,评估了CMR影像组学模型识别心血管危险因素导致的心脏结构和组织纹理变化的性能。我们从英国生物银行的前5065名参与者中评估了五个危险因素组:高血压(n = 1394)、糖尿病(n = 243)、高胆固醇(n = 779)、当前吸烟者(n = 320)和既往吸烟者(n = 1394)。每组随机匹配相同数量的健康对照者(无已知心血管疾病或危险因素)。影像组学分析应用于舒张末期和收缩末期左心室和右心室的短轴图像,每项研究共产生684个特征。采用序贯向前特征选择结合机器学习(ML)算法(支持向量机、随机森林和逻辑回归)为每个特定危险因素组构建影像组学特征。我们使用曲线下面积(AUC)、受试者工作特征(ROC)和统计检验评估所识别的影像组学特征实现的分离程度。L1正则化逻辑回归是最优的ML模型。与传统成像指标相比,影像组学特征在AUC评估中提高了危险因素组与健康亚组之间的区分度[糖尿病:0.80对0.70,高血压:0.72对0.69,高胆固醇:0.71对0.65,当前吸烟者:0.68对0.65,既往吸烟者:0.63对0.60]。此外,我们考虑了特定危险因素影像组学特征的临床解读。对于高血压患者和既往吸烟者,危险因素组的表面积与体积比相对于健康受试者较小;这可能反映了这些情况下整体向心性肥厚的模式。在糖尿病亚组中,最具区分性的影像组学特征是收缩末期心肌的中位数强度,这表明心肌组织水平存在整体改变。本研究证实了CMR影像组学用于心血管健康和疾病更深入图像表型分析的可行性和潜力。我们证明这种分析可能具有超越传统CMR指标的效用,可用于改善对心血管危险因素对心脏结构和组织早期影响的检测和理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e60/7667130/7084aef5b598/fcvm-07-591368-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验