Semmelweis University, Heart and Vascular Center, Budapest, Hungary.
William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
Eur Radiol. 2024 Jun;34(6):4113-4126. doi: 10.1007/s00330-023-10311-0. Epub 2023 Nov 21.
To use pericardial adipose tissue (PAT) radiomics phenotyping to differentiate existing and predict future heart failure (HF) cases in the UK Biobank.
PAT segmentations were derived from cardiovascular magnetic resonance (CMR) studies using an automated quality-controlled model to define the region-of-interest for radiomics analysis. Prevalent (present at time of imaging) and incident (first occurrence after imaging) HF were ascertained using health record linkage. We created balanced cohorts of non-HF individuals for comparison. PyRadiomics was utilised to extract 104 radiomics features, of which 28 were chosen after excluding highly correlated ones (0.8). These features, plus sex and age, served as predictors in binary classification models trained separately to detect (1) prevalent and (2) incident HF. We tested seven modeling methods using tenfold nested cross-validation and examined feature importance with explainability methods.
We studied 1204 participants in total, 297 participants with prevalent (60 ± 7 years, 21% female) and 305 with incident (61 ± 6 years, 32% female) HF, and an equal number of non-HF comparators. We achieved good discriminative performance for both prevalent (voting classifier; AUC: 0.76; F1 score: 0.70) and incident (light gradient boosting machine: AUC: 0.74; F1 score: 0.68) HF. Our radiomics models showed marginally better performance compared to PAT area alone. Increased PAT size (maximum 2D diameter in a given column or slice) and texture heterogeneity (sum entropy) were important features for prevalent and incident HF classification models.
The amount and character of PAT discriminate individuals with prevalent HF and predict incidence of future HF.
This study presents an innovative application of pericardial adipose tissue (PAT) radiomics phenotyping as a predictive tool for heart failure (HF), a major public health concern. By leveraging advanced machine learning methods, the research uncovers that the quantity and characteristics of PAT can be used to identify existing cases of HF and predict future occurrences. The enhanced performance of these radiomics models over PAT area alone supports the potential for better personalised care through earlier detection and prevention of HF.
•PAT radiomics applied to CMR was used for the first time to derive binary machine learning classifiers to develop models for discrimination of prevalence and prediction of incident heart failure. •Models using PAT area provided acceptable discrimination between cases of prevalent or incident heart failure and comparator groups. •An increased PAT volume (increased diameter using shape features) and greater texture heterogeneity captured by radiomics texture features (increased sum entropy) can be used as an additional classifier marker for heart failure.
利用心包脂肪组织(PAT)的放射组学表型来区分英国生物库中现有的和预测未来的心力衰竭(HF)病例。
使用自动质量控制模型从心血管磁共振(CMR)研究中得出 PAT 分割,以定义放射组学分析的感兴趣区域。通过健康记录链接确定现患(成像时存在)和新发(成像后首次发生)HF。我们为比较创建了非 HF 个体的平衡队列。利用 PyRadiomics 提取了 104 个放射组学特征,其中 28 个在排除高度相关特征(0.8)后被选中。这些特征,加上性别和年龄,作为分别用于检测(1)现患和(2)新发 HF 的二分类模型的预测因子。我们使用十倍嵌套交叉验证测试了七种建模方法,并使用可解释性方法检查了特征重要性。
我们总共研究了 1204 名参与者,其中 297 名参与者患有现患(60±7 岁,21%为女性)和 305 名患有新发(61±6 岁,32%为女性)HF,以及数量相等的非 HF 对照组。我们为现患(投票分类器;AUC:0.76;F1 评分:0.70)和新发(轻梯度提升机;AUC:0.74;F1 评分:0.68)HF 都获得了良好的判别性能。与 PAT 面积相比,我们的放射组学模型表现稍好。增加 PAT 大小(给定列或切片中的最大 2D 直径)和纹理异质性(和熵)是现患和新发 HF 分类模型的重要特征。
PAT 的数量和特征可区分现患 HF 患者,并预测未来 HF 的发生。
本研究创新性地应用心包脂肪组织(PAT)放射组学表型作为心力衰竭(HF)的预测工具,HF 是一个主要的公共卫生问题。通过利用先进的机器学习方法,研究发现 PAT 的数量和特征可用于识别现有的 HF 病例并预测未来的发生。这些放射组学模型在 PAT 面积上的表现优于单独的 PAT 面积,支持通过早期检测和预防 HF 来实现更好的个性化护理。
首次将 PAT 放射组学应用于 CMR,用于推导二进制机器学习分类器,以开发用于区分现患和预测新发心力衰竭的模型。
使用 PAT 面积的模型在现患或新发 HF 病例和对照组之间提供了可接受的区分。
增加的 PAT 体积(使用形状特征的增加直径)和放射组学纹理特征捕获的更大纹理异质性(增加和熵)可作为心力衰竭的附加分类标志物。