Suppr超能文献

一个血清学框架,用于调查整个菲律宾的急性原发性和继发性登革热病例报告。

A serological framework to investigate acute primary and post-primary dengue cases reporting across the Philippines.

机构信息

Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.

Department of Virology, Research Institute for Tropical Medicine, Manila, Philippines.

出版信息

BMC Med. 2020 Nov 27;18(1):364. doi: 10.1186/s12916-020-01833-1.

Abstract

BACKGROUND

In dengue-endemic countries, targeting limited control interventions to populations at risk of severe disease could enable increased efficiency. Individuals who have had their first (primary) dengue infection are at risk of developing more severe secondary disease, thus could be targeted for disease prevention. Currently, there is no reliable algorithm for determining primary and post-primary (infection with more than one flavivirus) status from a single serum sample. In this study, we developed and validated an immune status algorithm using single acute serum samples from reporting patients and investigated dengue immuno-epidemiological patterns across the Philippines.

METHODS

During 2015/2016, a cross-sectional sample of 10,137 dengue case reports provided serum for molecular (anti-DENV PCR) and serological (anti-DENV IgM/G capture ELISA) assay. Using mixture modelling, we re-assessed IgM/G seroprevalence and estimated functional, disease day-specific, IgG:IgM ratios that categorised the reporting population as negative, historical, primary and post-primary for dengue. We validated our algorithm against WHO gold standard criteria and investigated cross-reactivity with Zika by assaying a random subset for anti-ZIKV IgM and IgG. Lastly, using our algorithm, we explored immuno-epidemiological patterns of dengue across the Philippines.

RESULTS

Our modelled IgM and IgG seroprevalence thresholds were lower than kit-provided thresholds. Individuals anti-DENV PCR+ or IgM+ were classified as active dengue infections (83.1%, 6998/8425). IgG- and IgG+ active dengue infections on disease days 1 and 2 were categorised as primary and post-primary, respectively, while those on disease days 3 to 5 with IgG:IgM ratios below and above 0.45 were classified as primary and post-primary, respectively. A significant proportion of post-primary dengue infections had elevated anti-ZIKV IgG inferring previous Zika exposure. Our algorithm achieved 90.5% serological agreement with WHO standard practice. Post-primary dengue infections were more likely to be older and present with severe symptoms. Finally, we identified a spatio-temporal cluster of primary dengue case reporting in northern Luzon during 2016.

CONCLUSIONS

Our dengue immune status algorithm can equip surveillance operations with the means to target dengue control efforts. The algorithm accurately identified primary dengue infections who are at risk of future severe disease.

摘要

背景

在登革热流行国家,将有限的控制干预措施针对有发生重症疾病风险的人群,可能会提高效率。首次(原发性)登革热感染的个体有发生更严重的二次疾病的风险,因此可作为疾病预防的目标。目前,尚无可靠的算法可从单个血清样本中确定原发性和次发性(感染一种以上黄病毒)状态。在这项研究中,我们开发并验证了一种使用报告患者的单个急性血清样本的免疫状态算法,并调查了菲律宾各地的登革热免疫流行病学模式。

方法

在 2015/2016 年,从 10137 例登革热病例报告中采集了血清样本,用于分子(抗 DENV PCR)和血清学(抗 DENV IgM/G 捕获 ELISA)检测。使用混合模型,我们重新评估了 IgM/G 血清阳性率,并估计了功能、疾病日特异性 IgG:IgM 比值,将报告人群分类为阴性、既往、原发性和次发性登革热。我们根据世界卫生组织金标准标准对我们的算法进行了验证,并通过检测随机亚组的抗 ZIKV IgM 和 IgG 来调查与寨卡病毒的交叉反应。最后,我们使用我们的算法探索了菲律宾各地的登革热免疫流行病学模式。

结果

我们模型化的 IgM 和 IgG 血清阳性率阈值低于试剂盒提供的阈值。抗 DENV PCR+或 IgM+个体被归类为活动性登革热感染(83.1%,8425/10137)。疾病第 1 天和第 2 天的 IgG-和 IgG+活动性登革热感染分别归类为原发性和次发性,而疾病第 3 天至第 5 天 IgG:IgM 比值低于和高于 0.45 的分别归类为原发性和次发性。相当一部分次发性登革热感染的抗 ZIKV IgG 升高,提示以前曾接触过寨卡病毒。我们的算法与世界卫生组织标准实践的血清学一致性达到 90.5%。次发性登革热感染更可能是年龄较大且出现严重症状的患者。最后,我们发现 2016 年在吕宋岛北部存在原发性登革热病例报告的时空聚集。

结论

我们的登革热免疫状态算法可以为监测行动提供靶向登革热控制工作的手段。该算法准确识别了有发生未来严重疾病风险的原发性登革热感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b271/7694902/deb152f6758a/12916_2020_1833_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验