Suppr超能文献

使用混合模型将多种血清学检测方法与配对样本中的登革病毒感染推断相联系。

Linking multiple serological assays to infer dengue virus infections from paired samples using mixture models.

作者信息

Hamins-Puértolas Marco, Buddhari Darunee, Salje Henrik, Huang Angkana T, Hunsawong Taweewun, Cummings Derek A T, Fernandez Stefan, Farmer Aaron, Kaewhiran Surachai, Khampaen Direk, Srikiatkhachorn Anon, Iamsirithaworn Sopon, Waickman Adam, Thomas Stephen J, Endy Timothy, Rothman Alan L, Anderson Kathryn B, Rodriguez-Barraquer Isabel

机构信息

Department of Medicine, University of California, San Francisco, USA.

Department of Virology, WRAIR-Armed Forces Research Institute of Medical Sciences, Thailand.

出版信息

medRxiv. 2024 Dec 10:2024.12.08.24318683. doi: 10.1101/2024.12.08.24318683.

Abstract

Dengue virus (DENV) is an increasingly important human pathogen, with already half of the globe's population living in environments with transmission potential. Since only a minority of cases are captured by direct detection methods (RT-PCR or antigen tests), serological assays play an important role in the diagnostic process. However, individual assays can suffer from low sensitivity and specificity and interpreting results from multiple assays remains challenging, particularly because interpretations from multiple assays may differ, creating uncertainty over how to generate finalized interpretations. We develop a Bayesian mixture model that can jointly model data from multiple paired serological assays, to infer infection events from paired serological data. We first test the performance of our model using simulated data. We then apply our model to 677 pairs of acute and convalescent serum collected as a part of illness and household investigations across two longitudinal cohort studies in Kamphaeng Phet, Thailand, including data from 232 RT-PCR confirmed infections (gold standard). We compare the classification of the new model to prior standard interpretations that independently utilize information from either the hemagglutination inhibition assay (HAI) or the enzyme-linked immunosorbent assay (EIA). We find that additional serological assays improve accuracy of infection detection for both simulated and real world data. Models incorporating paired IgG and IgM data as well as those incorporating IgG, IgM, and HAI data consistently have higher accuracy when using PCR confirmed infections as a gold standard (87-90% F1 scores, a combined metric of sensitivity and specificity) than currently implemented cut-point approaches (82-84% F1 scores). Our results provide a probabilistic framework through which multiple serological assays across different platforms can be leveraged across sequential serum samples to provide insight into whether individuals have recently experienced a DENV infection. These methods are applicable to other pathogen systems where multiple serological assays can be leveraged to quantify infection history.

摘要

登革病毒(DENV)是一种日益重要的人类病原体,全球已有一半人口生活在有传播潜力的环境中。由于只有少数病例可通过直接检测方法(逆转录聚合酶链反应或抗原检测)确诊,血清学检测在诊断过程中发挥着重要作用。然而,单个检测方法可能存在灵敏度和特异性较低的问题,解读多个检测结果仍然具有挑战性,特别是因为多个检测结果的解读可能不同,这就导致在如何生成最终解读方面存在不确定性。我们开发了一种贝叶斯混合模型,该模型可以联合对来自多个配对血清学检测的数据进行建模,以便从配对血清学数据中推断感染事件。我们首先使用模拟数据测试模型的性能。然后,我们将模型应用于泰国彭世洛府两项纵向队列研究中作为疾病和家庭调查一部分收集的677对急性和恢复期血清,其中包括来自232例逆转录聚合酶链反应确诊感染(金标准)的数据。我们将新模型的分类与先前的标准解读进行比较,先前的标准解读独立利用血凝抑制试验(HAI)或酶联免疫吸附试验(EIA)的信息。我们发现,额外的血清学检测提高了模拟数据和真实世界数据的感染检测准确性。以逆转录聚合酶链反应确诊感染作为金标准时,纳入配对IgG和IgM数据的模型以及纳入IgG、IgM和HAI数据的模型,其准确率(F1分数,灵敏度和特异性的综合指标)始终高于目前实施的切点方法(F1分数为82 - 84%)。我们的研究结果提供了一个概率框架,通过该框架可以利用不同平台上的多个血清学检测对连续血清样本进行分析,以深入了解个体近期是否感染了登革病毒。这些方法适用于其他病原体系统,在这些系统中可以利用多个血清学检测来量化感染史。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1660/11661395/29195f72ecbe/nihpp-2024.12.08.24318683v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验