Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China; Guangzhou Medical University, Guangzhou, Guangdong Province, 511436, China.
Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
Biomaterials. 2021 Feb;269:120539. doi: 10.1016/j.biomaterials.2020.120539. Epub 2020 Nov 18.
Transplantation of synovial fluid-derived mesenchymal stem cells (SF-MSCs) is a viable therapy for cartilage degeneration of osteoarthritis (OA). But controlling chondrogenic differentiation of the transplanted SF-MSCs in the joints remains a challenge. Kartogenin (KGN) is a small molecule that has been discovered to induce differentiation of SF-MSCs to chondrocytes both in vitro and in vivo. The clinical application of KGN however is limited by its low water solubility. KGN forms precipitates in the cell, resulting in low effective concentration and thus limiting its chondrogesis-promoting activity. Here we report that targeted delivery of KGN to SF-MSCs by engineered exosomes leads to even dispersion of KGN in the cytosol, increases its effective concentration in the cell, and strongly promotes the chondrogenesis of SF-MSCs in vitro and in vivo. Fusing an MSC-binding peptide E7 with the exosomal membrane protein Lamp 2b yields exosomes with E7 peptide displayed on the surface (E7-Exo) that has SF-MSC targeting capability. KGN delivered by E7-Exo efficiently enters SF-MSCs and induces higher degree of cartilage differentiation than KGN alone or KGN delivered by exosomes without E7. Co-administration of SF-MSCs with E7-Exo/KGN in the knee joints via intra-articular injection also shows more pronounced therapeutic effects in a rat OA model than KGN alone or KGN delivered by exosomes without E7. Altogether, transplantation of SF-MSCs with in situ chondrogenesis enabled by E7-Exo delivered KGN holds promise towards as an advanced stem cell therapy for OA.
滑膜液源性间充质干细胞(SF-MSCs)移植是治疗骨关节炎(OA)软骨退变的一种可行疗法。但控制关节内移植的 SF-MSCs 的软骨分化仍然是一个挑战。卡托辛(KGN)是一种小分子,已被发现可在体外和体内诱导 SF-MSCs 向软骨细胞分化。然而,KGN 的临床应用受到其低水溶性的限制。KGN 在细胞中形成沉淀,导致有效浓度低,从而限制了其促软骨形成活性。在这里,我们报告通过工程化的外泌体将 KGN 靶向递送至 SF-MSCs 可导致 KGN 在细胞质中均匀分散,增加其在细胞中的有效浓度,并在体外和体内强烈促进 SF-MSCs 的软骨形成。将 MSC 结合肽 E7 与外泌体膜蛋白 Lamp 2b 融合,得到表面展示 E7 肽的外泌体(E7-Exo),具有 SF-MSC 靶向能力。E7-Exo 递送的 KGN 可有效进入 SF-MSCs,并诱导更高程度的软骨分化,优于单独的 KGN 或没有 E7 的外泌体递送的 KGN。通过关节内注射将 SF-MSCs 与 E7-Exo/KGN 共同给药也显示出在大鼠 OA 模型中比单独的 KGN 或没有 E7 的外泌体递送的 KGN 更显著的治疗效果。总之,通过 E7-Exo 递送 KGN 实现原位软骨形成的 SF-MSCs 移植有望成为 OA 的一种先进的干细胞治疗方法。