Suppr超能文献

在盐矿中通过高时间分辨率稳定同位素监测定量地质 CO。

Geological CO quantified by high-temporal resolution stable isotope monitoring in a salt mine.

机构信息

Department of Geography and Geosciences, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

K+S Aktiengesellschaft, Kassel, Germany.

出版信息

Sci Rep. 2020 Nov 26;10(1):20671. doi: 10.1038/s41598-020-77635-5.

Abstract

The relevance of CO emissions from geological sources to the atmospheric carbon budget is becoming increasingly recognized. Although geogenic gas migration along faults and in volcanic zones is generally well studied, short-term dynamics of diffusive geogenic CO emissions are mostly unknown. While geogenic CO is considered a challenging threat for underground mining operations, mines provide an extraordinary opportunity to observe geogenic degassing and dynamics close to its source. Stable carbon isotope monitoring of CO allows partitioning geogenic from anthropogenic contributions. High temporal-resolution enables the recognition of temporal and interdependent dynamics, easily missed by discrete sampling. Here, data is presented from an active underground salt mine in central Germany, collected on-site utilizing a field-deployed laser isotope spectrometer. Throughout the 34-day measurement period, total CO concentrations varied between 805 ppmV (5th percentile) and 1370 ppmV (95th percentile). With a 400-ppm atmospheric background concentration, an isotope mixing model allows the separation of geogenic (16-27%) from highly dynamic anthropogenic combustion-related contributions (21-54%). The geogenic fraction is inversely correlated to established CO concentrations that were driven by anthropogenic CO emissions within the mine. The described approach is applicable to other environments, including different types of underground mines, natural caves, and soils.

摘要

地质来源的 CO 排放与大气碳预算的相关性正日益受到关注。尽管断层和火山带中地质成因的天然气运移已得到广泛研究,但扩散成因的 CO 排放的短期动态仍知之甚少。虽然地质成因的 CO 被认为对地下采矿作业是一个具有挑战性的威胁,但矿山为近距离观察其来源处的地质脱气和动态提供了绝佳机会。CO 的稳定碳同位素监测可将地质成因与人为成因的贡献区分开来。高时间分辨率可识别时间和相互依存的动态,而这些动态很容易被离散采样所忽略。本文展示了来自德国中部一个活跃的地下盐矿的数据,这些数据是利用现场部署的激光同位素光谱仪在现场采集的。在 34 天的测量期间,总 CO 浓度在 805 ppmV(第 5 百分位数)至 1370 ppmV(第 95 百分位数)之间变化。在 400-ppm 的大气背景浓度下,同位素混合模型可将地质成因(16-27%)与高度动态的人为燃烧相关贡献(21-54%)区分开来。地质成因的分数与人为 CO 排放驱动的既定 CO 浓度呈负相关,人为 CO 排放是在矿山内产生的。所描述的方法适用于其他环境,包括不同类型的地下矿山、天然洞穴和土壤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acbe/7691992/d30d9eb0fde3/41598_2020_77635_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验