文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用来自Transformer句子嵌入的语言无关双向编码器表示法检测冗余健康调查问题:算法开发研究

Detecting Redundant Health Survey Questions by Using Language-Agnostic Bidirectional Encoder Representations From Transformers Sentence Embedding: Algorithm Development Study.

作者信息

Kang Sunghoon, Park Hyewon, Taira Ricky, Kim Hyeoneui

机构信息

College of Nursing, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea, 82 027408483.

The Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.

出版信息

JMIR Med Inform. 2025 Jun 10;13:e71687. doi: 10.2196/71687.


DOI:10.2196/71687
PMID:40493668
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12173092/
Abstract

BACKGROUND: As the importance of person-generated health data (PGHD) in health care and research has increased, efforts have been made to standardize survey-based PGHD to improve its usability and interoperability. Standardization efforts such as the Patient-Reported Outcomes Measurement Information System (PROMIS) and the National Institutes of Health (NIH) Common Data Elements (CDE) repository provide effective tools for managing and unifying health survey questions. However, previous methods using ontology-mediated annotation are not only labor-intensive and difficult to scale but also challenging for identifying semantic redundancies in survey questions, especially across multiple languages. OBJECTIVE: The goal of this work was to compute the semantic similarity among publicly available health survey questions to facilitate the standardization of survey-based PGHD. METHODS: We compiled various health survey questions authored in both English and Korean from the NIH CDE repository, PROMIS, Korean public health agencies, and academic publications. Questions were drawn from various health lifelog domains. A randomized question pairing scheme was used to generate a semantic text similarity dataset consisting of 1758 question pairs. The similarity scores between each question pair were assigned by 2 human experts. The tagged dataset was then used to build 4 classifiers featuring bag-of-words, sentence-bidirectional encoder representations from transformers (SBERT) with bidirectional encoder representations from transformers (BERT)-based embeddings, SBERT with language-agnostic BERT sentence embedding (LaBSE), and GPT-4o. The algorithms were evaluated using traditional contingency statistics. RESULTS: Among the 3 algorithms, SBERT-LaBSE demonstrated the highest performance in assessing the question similarity across both languages, achieving area under the receiver operating characteristic and precision-recall curves of >0.99. Additionally, SBERT-LaBSE proved effective in identifying cross-lingual semantic similarities. The SBERT-LaBSE algorithm excelled at aligning semantically equivalent sentences across both languages but encountered challenges in capturing subtle nuances and maintaining computational efficiency. Future research should focus on testing with larger multilingual datasets and on calibrating and normalizing scores across the health lifelog domains to improve consistency. CONCLUSIONS: This study introduces the SBERT-LaBSE algorithm for calculating the semantic similarity across 2 languages, showing that it outperforms BERT-based models, the GPT-4o model, and the bag-of-words approach, highlighting its potential in improving the semantic interoperability of survey-based PGHD across language barriers.

摘要

背景:随着个人生成的健康数据(PGHD)在医疗保健和研究中的重要性日益增加,人们已努力对基于调查的PGHD进行标准化,以提高其可用性和互操作性。诸如患者报告结果测量信息系统(PROMIS)和美国国立卫生研究院(NIH)通用数据元素(CDE)存储库等标准化工作为管理和统一健康调查问题提供了有效的工具。然而,以前使用本体介导注释的方法不仅劳动强度大且难以扩展,而且在识别调查问题中的语义冗余方面具有挑战性,尤其是在多种语言之间。 目的:这项工作的目标是计算公开可用的健康调查问题之间的语义相似性,以促进基于调查的PGHD的标准化。 方法:我们从NIH CDE存储库、PROMIS、韩国公共卫生机构和学术出版物中汇编了用英语和韩语撰写的各种健康调查问题。问题来自各种健康生活日志领域。采用随机问题配对方案生成了一个由1758个问题对组成的语义文本相似性数据集。每个问题对之间的相似性得分由两名人类专家给出。然后,使用标记的数据集构建4个分类器,其特征分别为词袋模型、基于双向编码器表征变换器(BERT)嵌入的变换器双向编码器表征(SBERT)、具有与语言无关的BERT句子嵌入(LaBSE)的SBERT以及GPT-4o。使用传统的列联统计对算法进行评估。 结果:在这3种算法中,SBERT-LaBSE在评估两种语言的问题相似性方面表现出最高的性能,其受试者工作特征曲线下面积和精确召回率曲线均大于0.99。此外,SBERT-LaBSE在识别跨语言语义相似性方面被证明是有效的。SBERT-LaBSE算法擅长对齐两种语言中语义等效的句子,但在捕捉细微差别和保持计算效率方面遇到了挑战。未来的研究应侧重于使用更大的多语言数据集进行测试,并对健康生活日志领域的分数进行校准和归一化,以提高一致性。 结论:本研究介绍了用于计算两种语言之间语义相似性的SBERT-LaBSE算法,表明它优于基于BERT的模型、GPT-4o模型和词袋方法,突出了其在跨越语言障碍提高基于调查的PGHD语义互操作性方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede7/12173092/940f1f85a35c/medinform-v13-e71687-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede7/12173092/b90dd5cdc35e/medinform-v13-e71687-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede7/12173092/46027dbcb353/medinform-v13-e71687-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede7/12173092/6b3ede601752/medinform-v13-e71687-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede7/12173092/940f1f85a35c/medinform-v13-e71687-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede7/12173092/b90dd5cdc35e/medinform-v13-e71687-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede7/12173092/46027dbcb353/medinform-v13-e71687-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede7/12173092/6b3ede601752/medinform-v13-e71687-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede7/12173092/940f1f85a35c/medinform-v13-e71687-g004.jpg

相似文献

[1]
Detecting Redundant Health Survey Questions by Using Language-Agnostic Bidirectional Encoder Representations From Transformers Sentence Embedding: Algorithm Development Study.

JMIR Med Inform. 2025-6-10

[2]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[3]
Surveillance for Violent Deaths - National Violent Death Reporting System, 50 States, the District of Columbia, and Puerto Rico, 2022.

MMWR Surveill Summ. 2025-6-12

[4]
Applications of Large Language Models in the Field of Suicide Prevention: Scoping Review.

J Med Internet Res. 2025-1-23

[5]
Stakeholders' perceptions and experiences of factors influencing the commissioning, delivery, and uptake of general health checks: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2025-3-20

[6]
Aural toilet (ear cleaning) for chronic suppurative otitis media.

Cochrane Database Syst Rev. 2025-6-9

[7]
From the -Factor to Cognitive Content: Detection and Discrimination of Psychopathologies Based on Explainable Artificial Intelligence.

Depress Anxiety. 2025-5-19

[8]
Clinical rating scales for assessing pain in newborn infants.

Cochrane Database Syst Rev. 2025-4-14

[9]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[10]
Performance of ChatGPT-4o and Four Open-Source Large Language Models in Generating Diagnoses Based on China's Rare Disease Catalog: Comparative Study.

J Med Internet Res. 2025-6-18

本文引用的文献

[1]
Similarity matching of medical question based on Siamese network.

BMC Med Inform Decis Mak. 2023-4-6

[2]
Semantic Textual Similarity in Japanese Clinical Domain Texts Using BERT.

Methods Inf Med. 2021-6

[3]
Patient-Generated Health Data (PGHD) Interoperability: An Integrative Perspective.

Stud Health Technol Inform. 2021-5-27

[4]
Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis.

JMIR Med Inform. 2021-5-26

[5]
Identification of Semantically Similar Sentences in Clinical Notes: Iterative Intermediate Training Using Multi-Task Learning.

JMIR Med Inform. 2020-11-27

[6]
Measurement of Semantic Textual Similarity in Clinical Texts: Comparison of Transformer-Based Models.

JMIR Med Inform. 2020-11-23

[7]
Use of patient-generated health data across healthcare settings: implications for health systems.

JAMIA Open. 2019-11-29

[8]
Patient-generated health data management and quality challenges in remote patient monitoring.

JAMIA Open. 2019-9-20

[9]
Detection of medical text semantic similarity based on convolutional neural network.

BMC Med Inform Decis Mak. 2019-8-7

[10]
Early experiences with patient generated health data: health system and patient perspectives.

J Am Med Inform Assoc. 2019-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索