Suppr超能文献

多视图多尺度优化特征表示以提高 EEG 分类性能。

Multi-View Multi-Scale Optimization of Feature Representation for EEG Classification Improvement.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2589-2597. doi: 10.1109/TNSRE.2020.3040984. Epub 2021 Jan 28.

Abstract

Effectively extracting common space pattern (CSP) features from motor imagery (MI) EEG signals is often highly dependent on the filter band selection. At the same time, optimizing the EEG channel combinations is another key issue that substantially affects the SMR feature representations. Although numerous algorithms have been developed to find channels that record important characteristics of MI, most of them select channels in a cumbersome way with low computational efficiency, thereby limiting the practicality of MI-based BCI systems. In this study, we propose the multi-scale optimization (MSO) of spatial patterns, optimizing filter bands over multiple channel sets within CSPs to further improve the performance of MI-based BCI. Specifically, several channel subsets are first heuristically predefined, and then raw EEG data specific to each of these subsets bandpass-filtered at the overlap between a set of filter bands. Further, instead of solving learning problems for each channel subset independently, we propose a multi-view learning based sparse optimization to jointly extract robust CSP features with L -norm regularization, aiming to capture the shared salient information across multiple related spatial patterns for enhanced classification performance. A support vector machine (SVM) classifier is then trained on these optimized EEG features for accurate recognition of MI tasks. Experimental results on three public EEG datasets validate the effectiveness of MSO compared to several other competing methods and their variants. These superior experimental results demonstrate that the proposed MSO method has promising potential in MI-based BCIs.

摘要

从运动想象 (MI) EEG 信号中有效地提取共同空间模式 (CSP) 特征通常高度依赖于滤波器带宽选择。同时,优化 EEG 通道组合是另一个关键问题,它会极大地影响 SMR 特征表示。尽管已经开发了许多算法来寻找记录 MI 重要特征的通道,但其中大多数都是以繁琐的方式选择通道,计算效率低,从而限制了基于 MI 的 BCI 系统的实用性。在这项研究中,我们提出了空间模式的多尺度优化 (MSO),在 CSP 内的多个通道集中优化滤波器带宽,以进一步提高基于 MI 的 BCI 的性能。具体来说,首先启发式地预定义几个通道子集,然后对每个子集的原始 EEG 数据在一组滤波器带宽之间的重叠处进行带通滤波。此外,我们不是为每个通道子集独立地解决学习问题,而是提出了一种基于多视图学习的稀疏优化方法,使用 L-范数正则化共同提取稳健的 CSP 特征,旨在捕捉多个相关空间模式之间的共享显著信息,以提高分类性能。然后,在这些优化后的 EEG 特征上训练支持向量机 (SVM) 分类器,以准确识别 MI 任务。在三个公共 EEG 数据集上的实验结果验证了 MSO 与其他几种竞争方法及其变体相比的有效性。这些优越的实验结果表明,所提出的 MSO 方法在基于 MI 的 BCI 中具有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验