Suppr超能文献

条件生成对抗网络辅助动态 F-FDG PET 脑研究的运动校正。

Conditional Generative Adversarial Networks Aided Motion Correction of Dynamic F-FDG PET Brain Studies.

机构信息

QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.

Department of Pediatrics, Children's Hospital of Michigan, The Detroit Medical Center, Wayne State University School of Medicine, Detroit, Michigan

出版信息

J Nucl Med. 2021 Jun 1;62(6):871-879. doi: 10.2967/jnumed.120.248856. Epub 2020 Nov 27.

Abstract

This work set out to develop a motion-correction approach aided by conditional generative adversarial network (cGAN) methodology that allows reliable, data-driven determination of involuntary subject motion during dynamic F-FDG brain studies. Ten healthy volunteers (5 men/5 women; mean age ± SD, 27 ± 7 y; weight, 70 ± 10 kg) underwent a test-retest F-FDG PET/MRI examination of the brain ( = 20). The imaging protocol consisted of a 60-min PET list-mode acquisition contemporaneously acquired with MRI, including MR navigators and a 3-dimensional time-of-flight MR angiography sequence. Arterial blood samples were collected as a reference standard representing the arterial input function (AIF). Training of the cGAN was performed using 70% of the total datasets ( = 16, randomly chosen), which was corrected for motion using MR navigators. The resulting cGAN mappings (between individual frames and the reference frame [55-60 min after injection]) were then applied to the test dataset (remaining 30%, = 6), producing artificially generated low-noise images from early high-noise PET frames. These low-noise images were then coregistered to the reference frame, yielding 3-dimensional motion vectors. Performance of cGAN-aided motion correction was assessed by comparing the image-derived input function (IDIF) extracted from a cGAN-aided motion-corrected dynamic sequence with the AIF based on the areas under the curves (AUCs). Moreover, clinical relevance was assessed through direct comparison of the average cerebral metabolic rates of glucose (CMRGlc) values in gray matter calculated using the AIF and the IDIF. The absolute percentage difference between AUCs derived using the motion-corrected IDIF and the AIF was (1.2% + 0.9%). The gray matter CMRGlc values determined using these 2 input functions differed by less than 5% (2.4% + 1.7%). A fully automated data-driven motion-compensation approach was established and tested for F-FDG PET brain imaging. cGAN-aided motion correction enables the translation of noninvasive clinical absolute quantification from PET/MR to PET/CT by allowing the accurate determination of motion vectors from the PET data itself.

摘要

本研究旨在开发一种基于条件生成对抗网络(cGAN)方法的运动校正方法,该方法允许在动态 F-FDG 脑研究中可靠地、数据驱动地确定非自愿的受试者运动。 10 名健康志愿者(5 名男性/5 名女性;平均年龄 ± 标准差,27 ± 7 岁;体重,70 ± 10 kg)接受了大脑 F-FDG PET/MRI 重复检查(n = 20)。成像方案包括 60 分钟的 PET 列表模式采集,与 MRI 同时采集,包括 MR 导航器和 3 维时飞越磁共振血管造影序列。采集动脉血样作为代表动脉输入函数(AIF)的参考标准。使用总数据集的 70%(n = 16,随机选择)对 cGAN 进行训练,该数据集使用 MR 导航器校正运动。然后将生成的 cGAN 映射(在个体帧和参考帧[注射后 55-60 分钟]之间)应用于测试数据集(其余 30%,n = 6),从早期高噪声 PET 帧中生成人为产生的低噪声图像。然后将这些低噪声图像配准到参考帧,产生三维运动向量。通过比较从 cGAN 辅助运动校正的动态序列中提取的图像衍生输入函数(IDIF)与基于曲线下面积(AUC)的 AIF,评估 cGAN 辅助运动校正的性能。此外,通过直接比较使用 AIF 和 IDIF 计算的灰质葡萄糖代谢率(CMRGlc)值,评估了临床相关性。 使用校正后的 IDIF 和 AIF 得出的 AUC 之间的绝对百分比差异为(1.2%+0.9%)。使用这两种输入函数确定的灰质 CMRGlc 值差异小于 5%(2.4%+1.7%)。 建立并测试了一种用于 F-FDG PET 脑成像的全自动数据驱动运动补偿方法。cGAN 辅助运动校正通过允许从 PET 数据本身准确确定运动向量,实现了从 PET/MR 向 PET/CT 的无创临床绝对定量的转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d8c/8729870/11fc2b427084/jnm248856absf1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验