Suppr超能文献

FR-Match:使用 Friedman-Rafsky 非参数检验对单细胞 RNA 测序数据中的细胞类型簇进行稳健匹配。

FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman-Rafsky non-parametric test.

机构信息

Staff Scientist and Biostatistician in the Informatics Department at the J. Craig Venter Institute.

Senior Bioinformatics Analyst in the Informatics Department at the J. Craig Venter Institute.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa339.

Abstract

Single cell/nucleus RNA sequencing (scRNAseq) is emerging as an essential tool to unravel the phenotypic heterogeneity of cells in complex biological systems. While computational methods for scRNAseq cell type clustering have advanced, the ability to integrate datasets to identify common and novel cell types across experiments remains a challenge. Here, we introduce a cluster-to-cluster cell type matching method-FR-Match-that utilizes supervised feature selection for dimensionality reduction and incorporates shared information among cells to determine whether two cell type clusters share the same underlying multivariate gene expression distribution. FR-Match is benchmarked with existing cell-to-cell and cell-to-cluster cell type matching methods using both simulated and real scRNAseq data. FR-Match proved to be a stringent method that produced fewer erroneous matches of distinct cell subtypes and had the unique ability to identify novel cell phenotypes in new datasets. In silico validation demonstrated that the proposed workflow is the only self-contained algorithm that was robust to increasing numbers of true negatives (i.e. non-represented cell types). FR-Match was applied to two human brain scRNAseq datasets sampled from cortical layer 1 and full thickness middle temporal gyrus. When mapping cell types identified in specimens isolated from these overlapping human brain regions, FR-Match precisely recapitulated the laminar characteristics of matched cell type clusters, reflecting their distinct neuroanatomical distributions. An R package and Shiny application are provided at https://github.com/JCVenterInstitute/FRmatch for users to interactively explore and match scRNAseq cell type clusters with complementary visualization tools.

摘要

单细胞/核 RNA 测序 (scRNAseq) 正成为揭示复杂生物系统中细胞表型异质性的重要工具。虽然 scRNAseq 细胞类型聚类的计算方法已经取得了进展,但整合数据集以识别跨实验的常见和新颖细胞类型的能力仍然是一个挑战。在这里,我们引入了一种簇到簇的细胞类型匹配方法 - FR-Match,它利用有监督的特征选择进行降维,并整合细胞之间的共享信息,以确定两个细胞类型簇是否共享相同的潜在多变量基因表达分布。FR-Match 使用模拟和真实的 scRNAseq 数据,与现有的细胞间和细胞到簇的细胞类型匹配方法进行了基准测试。FR-Match 被证明是一种严格的方法,它产生了较少的错误匹配不同的细胞亚型,并且具有在新数据集识别新的细胞表型的独特能力。在计算机验证中,证明了所提出的工作流程是唯一一种对真实阴性(即未表示的细胞类型)数量增加具有鲁棒性的自包含算法。FR-Match 应用于从皮质 1 层和全厚度颞中回采样的两个人类大脑 scRNAseq 数据集。当映射从这些重叠的人类大脑区域分离的样本中鉴定的细胞类型时,FR-Match 精确地再现了匹配的细胞类型簇的分层特征,反映了它们独特的神经解剖分布。用户可以在 https://github.com/JCVenterInstitute/FRmatch 上使用 R 包和 Shiny 应用程序,使用互补的可视化工具交互探索和匹配 scRNAseq 细胞类型簇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dab/8294536/94eb4d050063/bbaa339f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验