Suppr超能文献

scAlign:一种用于从 scRNA-seq 数据中进行对齐、整合和稀有细胞鉴定的工具。

scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data.

机构信息

Graduate Group in Computer Science, University of California, Davis, Davis, CA, USA.

Genome Center, University of California, Davis, Davis, CA, USA.

出版信息

Genome Biol. 2019 Aug 14;20(1):166. doi: 10.1186/s13059-019-1766-4.

Abstract

scRNA-seq dataset integration occurs in different contexts, such as the identification of cell type-specific differences in gene expression across conditions or species, or batch effect correction. We present scAlign, an unsupervised deep learning method for data integration that can incorporate partial, overlapping, or a complete set of cell labels, and estimate per-cell differences in gene expression across datasets. scAlign performance is state-of-the-art and robust to cross-dataset variation in cell type-specific expression and cell type composition. We demonstrate that scAlign reveals gene expression programs for rare populations of malaria parasites. Our framework is widely applicable to integration challenges in other domains.

摘要

scRNA-seq 数据集整合发生在不同的背景下,例如识别条件或物种间基因表达的细胞类型特异性差异,或批次效应校正。我们提出了 scAlign,这是一种用于数据整合的无监督深度学习方法,可以整合部分、重叠或完整的细胞标签,并估计跨数据集的每个细胞基因表达的差异。scAlign 的性能是最先进的,并且对细胞类型特异性表达和细胞类型组成的跨数据集变化具有鲁棒性。我们证明了 scAlign 揭示了疟原虫稀有群体的基因表达程序。我们的框架广泛适用于其他领域的集成挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ea8/6693154/7f8f2bebad91/13059_2019_1766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验