Eggers Ruben, de Winter Fred, Tannemaat Martijn R, Malessy Martijn J A, Verhaagen Joost
Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Academy of Arts and Sciences, Amsterdam, Netherlands.
Department of Neurology, Leiden University Medical Center, Leiden, Netherlands.
Front Bioeng Biotechnol. 2020 Oct 30;8:583184. doi: 10.3389/fbioe.2020.583184. eCollection 2020.
A spinal root avulsion is the most severe proximal peripheral nerve lesion possible. Avulsion of ventral root filaments disconnects spinal motoneurons from their target muscles, resulting in complete paralysis. In patients that undergo brachial plexus nerve repair, axonal regeneration is a slow process. It takes months or even years to bridge the distance from the lesion site to the distal targets located in the forearm. Following ventral root avulsion, without additional pharmacological or surgical treatments, progressive death of motoneurons occurs within 2 weeks (Koliatsos et al., 1994). Reimplantation of the avulsed ventral root or peripheral nerve graft can act as a conduit for regenerating axons and increases motoneuron survival (Chai et al., 2000). However, this beneficial effect is transient. Combined with protracted and poor long-distance axonal regeneration, this results in permanent function loss. To overcome motoneuron death and improve functional recovery, several promising intervention strategies are being developed. Here, we focus on GDNF gene-therapy. We first introduce the experimental ventral root avulsion model and discuss its value as a proxy to study clinical neurotmetic nerve lesions. Second, we discuss our recent studies showing that GDNF gene-therapy is a powerful strategy to promote long-term motoneuron survival and improve function when target muscle reinnervation occurs within a critical post-lesion period. Based upon these observations, we discuss the influence of timing of the intervention, and of the duration, concentration and location of GDNF delivery on functional outcome. Finally, we provide a perspective on future research directions to realize functional recovery using gene therapy.
脊髓神经根撕脱是最严重的近端周围神经损伤。腹侧神经根丝的撕脱使脊髓运动神经元与其靶肌肉断开连接,导致完全瘫痪。在接受臂丛神经修复的患者中,轴突再生是一个缓慢的过程。从损伤部位到位于前臂的远端靶点的距离需要数月甚至数年才能跨越。腹侧神经根撕脱后,如果没有额外的药物或手术治疗,运动神经元会在2周内逐渐死亡(科利亚索斯等人,1994年)。撕脱的腹侧神经根再植或周围神经移植可作为再生轴突的管道,并提高运动神经元的存活率(柴等人,2000年)。然而,这种有益效果是短暂的。再加上长期且不佳的长距离轴突再生,这会导致永久性功能丧失。为了克服运动神经元死亡并改善功能恢复,正在开发几种有前景的干预策略。在这里,我们重点关注胶质细胞源性神经营养因子(GDNF)基因治疗。我们首先介绍实验性腹侧神经根撕脱模型,并讨论其作为研究临床神经断裂性神经损伤的替代模型的价值。其次,我们讨论我们最近的研究,这些研究表明,当在损伤后的关键时期内实现靶肌肉再支配时,GDNF基因治疗是促进运动神经元长期存活和改善功能的有力策略。基于这些观察结果,我们讨论干预时机以及GDNF递送的持续时间、浓度和位置对功能结果的影响。最后,我们对未来利用基因治疗实现功能恢复的研究方向提供一个展望。