Suppr超能文献

基于深度学习的计算机断层扫描技术模拟外周肺病变的径向支气管内超声图像

Computed tomography-based radial endobronchial ultrasound image simulation of peripheral pulmonary lesions using deep learning.

作者信息

Zhang Chunxi, Zhou Yongzheng, Sun Chuanqi, Zhang Jilei, Chen Junxiang, Zheng Xiaoxuan, Li Ying, Liu Xiaoyao, Liu Weiping, Sun Jiayuan

机构信息

Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Endosc Ultrasound. 2024 Jul-Aug;13(4):239-247. doi: 10.1097/eus.0000000000000079. Epub 2024 Aug 20.

Abstract

BACKGROUND AND OBJECTIVES

Radial endobronchial ultrasound (R-EBUS) plays an important role during transbronchial sampling of peripheral pulmonary lesions (PPLs). However, existing navigational bronchoscopy systems provide no guidance for R-EBUS. To guide intraoperative R-EBUS probe manipulation, we aimed to simulate R-EBUS images of PPLs from preoperative computed tomography (CT) data using deep learning.

MATERIALS AND METHODS

Preoperative CT and intraoperative ultrasound data of PPLs in 250 patients who underwent R-EBUS-guided transbronchial lung biopsy were retrospectively collected. Two-dimensional CT sections perpendicular to the biopsy path were transformed into ultrasonic reflection and transmission images using an ultrasound propagation model to obtain the initial simulated R-EBUS images. A cycle generative adversarial network was trained to improve the realism of initial simulated images. Objective and subjective indicators were used to evaluate the similarity between real and simulated images.

RESULTS

Wasserstein distances showed that utilizing the cycle generative adversarial network significantly improved the similarity between real and simulated R-EBUS images. There was no statistically significant difference in the long axis, short axis, and area between real and simulated lesions (all > 0.05). Based on the experts' evaluation, a median similarity score of ≥4 on a 5-point scale was obtained for lesion size, shape, margin, internal echoes, and overall similarity.

CONCLUSIONS

Simulated R-EBUS images of PPLs generated by our method can closely mimic the corresponding real images, demonstrating the potential of our method to provide guidance for intraoperative R-EBUS probe manipulation.

摘要

背景与目的

径向支气管内超声(R-EBUS)在周围型肺病变(PPL)的经支气管采样过程中发挥着重要作用。然而,现有的导航支气管镜系统并未为R-EBUS提供指导。为了指导术中R-EBUS探头操作,我们旨在利用深度学习从术前计算机断层扫描(CT)数据模拟PPL的R-EBUS图像。

材料与方法

回顾性收集了250例行R-EBUS引导下经支气管肺活检患者的PPL术前CT和术中超声数据。使用超声传播模型将垂直于活检路径的二维CT切片转换为超声反射和透射图像,以获得初始模拟R-EBUS图像。训练一个循环生成对抗网络以提高初始模拟图像的逼真度。使用客观和主观指标评估真实图像与模拟图像之间的相似度。

结果

Wasserstein距离表明,利用循环生成对抗网络显著提高了真实和模拟R-EBUS图像之间的相似度。真实病变与模拟病变之间的长轴、短轴和面积无统计学显著差异(均>0.05)。根据专家评估,病变大小、形状、边缘、内部回声和总体相似度在5分制上的中位相似度得分≥4分。

结论

我们的方法生成的PPL模拟R-EBUS图像可以紧密模仿相应的真实图像,证明了我们的方法为术中R-EBUS探头操作提供指导的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a53/11419460/d82bd53c208e/eusj-13-239-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验