Suppr超能文献

基于血流的动脉自旋标记技术的多器官比较:用于脑和肾灌注成像的空间非选择性标记

Multi-organ comparison of flow-based arterial spin labeling techniques: Spatially non-selective labeling for cerebral and renal perfusion imaging.

作者信息

Franklin Suzanne L, Bones Isabell K, Harteveld Anita A, Hirschler Lydiane, van Stralen Marijn, Qin Qin, de Boer Anneloes, Hoogduin Johannes M, Bos Clemens, van Osch Matthias J P, Schmid Sophie

机构信息

C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.

Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Magn Reson Med. 2021 May;85(5):2580-2594. doi: 10.1002/mrm.28603. Epub 2020 Nov 30.

Abstract

PURPOSE

Flow-based arterial spin labeling (ASL) techniques provide a transit-time insensitive alternative to the more conventional spatially selective ASL techniques. However, it is not clear which flow-based ASL technique performs best and also, how these techniques perform outside the brain (taking into account eg, flow-dynamics, field-inhomogeneity, and organ motion). In the current study we aimed to compare 4 flow-based ASL techniques (ie, velocity selective ASL, acceleration selective ASL, multiple velocity selective saturation ASL, and velocity selective inversion prepared ASL [VSI-ASL]) to the current spatially selective reference techniques in brain (ie, pseudo-continuous ASL [pCASL]) and kidney (ie, pCASL and flow alternating inversion recovery [FAIR]).

METHODS

Brain (n = 5) and kidney (n = 6) scans were performed in healthy subjects at 3T. Perfusion-weighted signal (PWS) maps were generated and ASL techniques were compared based on temporal SNR (tSNR), sensitivity to perfusion changes using a visual stimulus (brain) and robustness to respiratory motion by comparing scans acquired in paced-breathing and free-breathing (kidney).

RESULTS

In brain, all flow-based ASL techniques showed similar tSNR as pCASL, but only VSI-ASL showed similar sensitivity to perfusion changes. In kidney, all flow-based ASL techniques had comparable tSNR, although all lower than FAIR. In addition, VSI-ASL showed a sensitivity to B -inhomogeneity. All ASL techniques were relatively robust to respiratory motion.

CONCLUSION

In both brain and kidney, flow-based ASL techniques provide a planning-free and transit-time insensitive alternative to spatially selective ASL techniques. VSI-ASL shows the most potential overall, showing similar performance as the golden standard pCASL in brain. However, in kidney, a reduction of B -sensitivity of VSI-ASL is necessary to match the performance of FAIR.

摘要

目的

基于血流的动脉自旋标记(ASL)技术为更传统的空间选择性ASL技术提供了一种对通过时间不敏感的替代方法。然而,尚不清楚哪种基于血流的ASL技术表现最佳,以及这些技术在脑外的表现如何(例如,考虑血流动力学、场不均匀性和器官运动)。在本研究中,我们旨在将4种基于血流的ASL技术(即速度选择性ASL、加速度选择性ASL、多速度选择性饱和ASL和速度选择性反转准备ASL [VSI-ASL])与当前脑内的空间选择性参考技术(即伪连续ASL [pCASL])和肾内的空间选择性参考技术(即pCASL和血流交替反转恢复 [FAIR])进行比较。

方法

在3T对健康受试者进行脑(n = 5)和肾(n = 6)扫描。生成灌注加权信号(PWS)图,并基于时间信噪比(tSNR)、使用视觉刺激时对灌注变化的敏感性(脑)以及通过比较在有节奏呼吸和自由呼吸时采集的扫描对呼吸运动的稳健性(肾)对ASL技术进行比较。

结果

在脑内,所有基于血流的ASL技术的tSNR与pCASL相似,但只有VSI-ASL对灌注变化的敏感性相似。在肾内,所有基于血流的ASL技术的tSNR相当,尽管均低于FAIR。此外,VSI-ASL对B不均匀性敏感。所有ASL技术对呼吸运动相对稳健。

结论

在脑和肾中,基于血流的ASL技术为空间选择性ASL技术提供了一种无需规划且对通过时间不敏感的替代方法。总体而言,VSI-ASL显示出最大潜力,在脑内表现与金标准pCASL相似。然而,在肾内,需要降低VSI-ASL 的B敏感性以匹配FAIR的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a82d/7898485/bc2faeb265bb/MRM-85-2580-g001.jpg

相似文献

3
Improved velocity-selective-inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition.
Magn Reson Med. 2020 Nov;84(5):2512-2522. doi: 10.1002/mrm.28310. Epub 2020 May 13.
4
Exploring label dynamics of velocity-selective arterial spin labeling in the kidney.
Magn Reson Med. 2021 Jul;86(1):131-142. doi: 10.1002/mrm.28683. Epub 2021 Feb 4.
5
Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI.
MAGMA. 2020 Feb;33(1):81-94. doi: 10.1007/s10334-019-00806-7. Epub 2019 Dec 6.
6
Velocity-selective-inversion prepared arterial spin labeling.
Magn Reson Med. 2016 Oct;76(4):1136-48. doi: 10.1002/mrm.26010. Epub 2015 Oct 28.
9
Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL.
Magn Reson Med. 2019 Feb;81(2):1004-1015. doi: 10.1002/mrm.27461. Epub 2018 Sep 6.
10
Demonstration of velocity selective myocardial arterial spin labeling perfusion imaging in humans.
Magn Reson Med. 2018 Jul;80(1):272-278. doi: 10.1002/mrm.26994. Epub 2017 Nov 6.

引用本文的文献

5
Test-retest reliability of 3D velocity-selective arterial spin labeling for detecting normal variations of cerebral blood flow.
Neuroimage. 2023 May 1;271:120039. doi: 10.1016/j.neuroimage.2023.120039. Epub 2023 Mar 16.
6
Arterial spin labeling using spatio-temporal encoding readout for robust perfusion imaging in inhomogenous magnetic fields.
Magn Reson Med. 2023 Mar;89(3):1092-1101. doi: 10.1002/mrm.29506. Epub 2022 Nov 24.
7
Velocity-selective excitation: Principles and applications.
NMR Biomed. 2023 Feb;36(2):e4820. doi: 10.1002/nbm.4820. Epub 2022 Sep 9.
9
T -oximetry-based cerebral venous oxygenation mapping using Fourier-transform-based velocity-selective pulse trains.
Magn Reson Med. 2022 Sep;88(3):1292-1302. doi: 10.1002/mrm.29300. Epub 2022 May 24.

本文引用的文献

1
Optimization of pseudo-continuous arterial spin labeling for renal perfusion imaging.
Magn Reson Med. 2021 Mar;85(3):1507-1521. doi: 10.1002/mrm.28531. Epub 2020 Oct 5.
3
Consensus-based technical recommendations for clinical translation of renal ASL MRI.
MAGMA. 2020 Feb;33(1):141-161. doi: 10.1007/s10334-019-00800-z. Epub 2019 Dec 12.
4
Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI.
MAGMA. 2020 Feb;33(1):81-94. doi: 10.1007/s10334-019-00806-7. Epub 2019 Dec 6.
6
Influence of the cardiac cycle on velocity selective and acceleration selective arterial spin labeling.
Magn Reson Med. 2020 Mar;83(3):872-882. doi: 10.1002/mrm.27973. Epub 2019 Sep 4.
7
Enabling free-breathing background suppressed renal pCASL using fat imaging and retrospective motion correction.
Magn Reson Med. 2019 Jul;82(1):276-288. doi: 10.1002/mrm.27723. Epub 2019 Mar 18.
8
Noncontrast MR angiography: An update.
J Magn Reson Imaging. 2019 Feb;49(2):355-373. doi: 10.1002/jmri.26288. Epub 2018 Dec 19.
9
Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL.
Magn Reson Med. 2019 Feb;81(2):1004-1015. doi: 10.1002/mrm.27461. Epub 2018 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验