Suppr超能文献

深部脑刺激的概率映射:15 年治疗经验的启示。

Probabilistic Mapping of Deep Brain Stimulation: Insights from 15 Years of Therapy.

机构信息

Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Ontario, Canada.

Krembil Research Institute, University of Toronto, Toronto, Ontario, Canada.

出版信息

Ann Neurol. 2021 Mar;89(3):426-443. doi: 10.1002/ana.25975. Epub 2020 Dec 21.

Abstract

Deep brain stimulation (DBS) depends on precise delivery of electrical current to target tissues. However, the specific brain structures responsible for best outcome are still debated. We applied probabilistic stimulation mapping to a retrospective, multidisorder DBS dataset assembled over 15 years at our institution (n = 482 patients; n = 303; n = 64; n = 39; n = 76) to identify the neuroanatomical substrates of optimal clinical response. Using high-resolution structural magnetic resonance imaging and activation volume modeling, probabilistic stimulation maps (PSMs) that delineated areas of above-mean and below-mean response for each patient cohort were generated and defined in terms of their relationships with surrounding anatomical structures. Our results show that overlap between PSMs and individual patients' activation volumes can serve as a guide to predict clinical outcomes, but that this is not the sole determinant of response. In the future, individualized models that incorporate advancements in mapping techniques with patient-specific clinical variables will likely contribute to the optimization of DBS target selection and improved outcomes for patients. ANN NEUROL 2021;89:426-443.

摘要

深部脑刺激(DBS)依赖于将电流精确输送到目标组织。然而,负责最佳结果的特定大脑结构仍存在争议。我们将概率刺激映射应用于我们机构在过去 15 年中收集的回顾性多障碍 DBS 数据集(n = 482 名患者;n = 303 名;n = 64 名;n = 39 名;n = 76 名),以确定最佳临床反应的神经解剖学基础。使用高分辨率结构磁共振成像和激活体积建模,为每个患者队列生成并定义了概率刺激图(PSM),这些图描绘了每个患者的高于平均值和低于平均值反应的区域,并根据它们与周围解剖结构的关系进行了定义。我们的结果表明,PSM 与个体患者的激活体积之间的重叠可以作为预测临床结果的指南,但这不是反应的唯一决定因素。在未来,将映射技术的进展与患者特定的临床变量相结合的个体化模型可能有助于优化 DBS 靶点选择并改善患者的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验