Li Wen-Yuan, Qu Wen-Rui, Li Yi, Wang Shu-Ying, Liu Dong-Ming, Deng Ling-Xiao, Wang Ying
Mudanjiang North Medicine Resource Development and Application Collaborative Innovation Center, Mudanjiang, China.
Institute of Neural Tissue Engineering, Mudanjiang University of Medicine, Mudanjiang, China.
Front Neurol. 2024 Dec 4;15:1442281. doi: 10.3389/fneur.2024.1442281. eCollection 2024.
The landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms. A literature review via Web of Science and PubMed databases from 1990 to May 29, 2024, reveals a growing body of evidence for therapeutic DBS in SCI recovery. Advances in techniques like optogenetics and whole-brain tractogram have helped elucidate DBS mechanisms. Neuronal targets sites for SCI functional recovery include the mesencephalic locomotor region (MLR), cuneiform nucleus (CNF), and nucleus raphe magnus (NRG), with pedunculopontine nucleus (PPN), periaqueductal gray (PAG), and nucleus ventroposterolateral thalami (VPL) for post-injury functional recovery treatment. Radiologically guided DBS optimization and combination therapy with classical rehabilitation have become an effective therapeutic method, though ongoing interventional trials are needed to enhance understanding and validate DBS efficacy in SCI. On the pre-clinical front, standardization of pre-clinical approaches are essential to enhance the quality of evidence on DBS safety and efficacy. Mapping brain targets and optimizing DBS protocols, aided by combined DBS and medical imaging, are critical endeavors. Overall, DBS holds promise for neurological and functional recovery after SCI, akin to other electrical stimulation approaches.
用于运动功能恢复的治疗性深部脑刺激(DBS)领域正在迅速发展。本综述概述了电神经调节对脊髓损伤(SCI)的影响,重点关注人类和动物模型中用于运动功能恢复的DBS。我们强调了有助于深入了解潜在细胞和分子机制的研究。通过科学网和PubMed数据库对1990年至2024年5月29日的文献进行综述,发现越来越多的证据支持治疗性DBS用于SCI恢复。光遗传学和全脑纤维束成像等技术的进步有助于阐明DBS机制。SCI功能恢复的神经元靶点包括中脑运动区(MLR)、楔形核(CNF)和中缝大核(NRG),而脚桥核(PPN)、导水管周围灰质(PAG)和丘脑腹后外侧核(VPL)用于损伤后功能恢复治疗。放射学引导下的DBS优化以及与传统康复的联合治疗已成为一种有效的治疗方法,不过仍需要进行正在进行的干预试验,以加深对DBS在SCI中疗效的理解和验证。在临床前方面,临床前方法的标准化对于提高DBS安全性和疗效证据的质量至关重要。借助DBS与医学成像相结合来绘制脑靶点并优化DBS方案,是至关重要的工作。总体而言,与其他电刺激方法类似,DBS有望促进SCI后的神经和功能恢复。