State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
PLoS Biol. 2020 Nov 30;18(11):e3000749. doi: 10.1371/journal.pbio.3000749. eCollection 2020 Nov.
Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) 9 has been widely used far beyond genome editing. Fusions of deactivated Cas9 (dCas9) to transcription effectors enable interrogation of the epigenome and controlling of gene expression. However, the large transgene size of dCas9-fusion hinders its applications especially in somatic tissues. Here, we develop a robust CRISPR interference (CRISPRi) system by transgenic expression of doxycycline (Dox) inducible dCas9-KRAB in mouse embryonic stem cells (iKRAB ESC). After introduction of specific single-guide RNAs (sgRNAs), the induced dCas9-KRAB efficiently maintains gene inactivation, although it modestly down-regulates the expression of active genes. The proper timing of Dox addition during cell differentiation or reprogramming allows us to study or screen spatiotemporally activated promoters or enhancers and thereby the gene functions. Furthermore, taking the ESC for blastocyst injection, we generate an iKRAB knock-in (KI) mouse model that enables the shutdown of gene expression and loss-of-function (LOF) studies ex vivo and in vivo by a simple transduction of gRNAs. Thus, our inducible CRISPRi ESC line and KI mouse provide versatile and convenient platforms for functional interrogation and high-throughput screens of specific genes and potential regulatory elements in the setting of development or diseases.
成簇规律间隔短回文重复序列(CRISPR)-CRISPR 相关(Cas)9 的应用已远远超出基因组编辑。失活 Cas9(dCas9)与转录效应因子融合可用于研究表观基因组并控制基因表达。然而,dCas9 融合的大转基因大小限制了其在体细胞组织中的应用。在这里,我们通过在小鼠胚胎干细胞(iKRAB ESC)中转基因表达四环素(Dox)诱导的 dCas9-KRAB 开发了一种强大的 CRISPR 干扰(CRISPRi)系统。在引入特异性单指导 RNA(sgRNA)后,诱导的 dCas9-KRAB 可有效地维持基因失活,尽管它适度下调了活性基因的表达。在细胞分化或重编程过程中适当添加 Dox 可让我们研究或筛选时空激活的启动子或增强子,从而研究基因功能。此外,通过将 ESC 注射到囊胚中,我们生成了一种 iKRAB 敲入(KI)小鼠模型,该模型可通过简单转导 gRNA 在体外和体内实现基因表达关闭和功能丧失(LOF)研究。因此,我们的诱导型 CRISPRi ESC 系和 KI 小鼠为特定基因和潜在调控元件的功能研究和高通量筛选提供了灵活便捷的平台,适用于发育或疾病研究。