Suppr超能文献

寡核苷酸制造中的可持续性挑战与机遇

Sustainability Challenges and Opportunities in Oligonucleotide Manufacturing.

作者信息

Andrews Benjamin I, Antia Firoz D, Brueggemeier Shawn B, Diorazio Louis J, Koenig Stefan G, Kopach Michael E, Lee Heewon, Olbrich Martin, Watson Anna L

机构信息

Chemical Development, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom.

Biogen, Inc., Cambridge, Massachusetts 02142, United States.

出版信息

J Org Chem. 2021 Jan 1;86(1):49-61. doi: 10.1021/acs.joc.0c02291. Epub 2020 Nov 30.

Abstract

With a renewed and growing interest in therapeutic oligonucleotides across the pharmaceutical industry, pressure is increasing on drug developers to take more seriously the sustainability ramifications of this modality. With 12 oligonucleotide drugs reaching the market to date and hundreds more in clinical trials and preclinical development, the current state of the art in oligonucleotide production poses a waste and cost burden to manufacturers. Legacy technologies make use of large volumes of hazardous reagents and solvents, as well as energy-intensive processes in synthesis, purification, and isolation. In 2016, the American Chemical Society (ACS) Green Chemistry Institute Pharmaceutical Roundtable (GCIPR) identified the development of greener processes for oligonucleotide Active Pharmaceutical Ingredients (APIs) as a critical unmet need. As a result, the Roundtable formed a focus team with the remit of identifying green chemistry and engineering improvements that would make oligonucleotide production more sustainable. In this Perspective, we summarize the present challenges in oligonucleotide synthesis, purification, and isolation; highlight potential solutions; and encourage synergies between academia; contract research, development and manufacturing organizations; and the pharmaceutical industry. A critical part of our assessment includes Process Mass Intensity (PMI) data from multiple companies to provide preliminary baseline metrics for current oligonucleotide manufacturing processes.

摘要

随着整个制药行业对治疗性寡核苷酸的兴趣重新燃起且不断增长,药物开发商面临越来越大的压力,需要更加认真地对待这种药物形式的可持续性影响。迄今为止,已有12种寡核苷酸药物上市,还有数百种处于临床试验和临床前开发阶段,目前寡核苷酸生产的技术水平给制造商带来了浪费和成本负担。传统技术使用大量危险试剂和溶剂,以及合成、纯化和分离过程中能源密集型工艺。2016年,美国化学学会(ACS)绿色化学研究所制药圆桌会议(GCIPR)确定开发更环保的寡核苷酸活性药物成分(API)工艺是一项关键的未满足需求。因此,该圆桌会议成立了一个重点团队,其职责是确定能够使寡核苷酸生产更具可持续性的绿色化学和工程改进措施。在这篇观点文章中,我们总结了寡核苷酸合成、纯化和分离方面目前面临的挑战;强调了潜在的解决方案;并鼓励学术界、合同研发生产组织和制药行业之间的协同合作。我们评估的一个关键部分包括来自多家公司的过程质量强度(PMI)数据,以提供当前寡核苷酸制造工艺的初步基线指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fa3/8154579/f2e25906dda0/jo0c02291_0010.jpg

相似文献

1
Sustainability Challenges and Opportunities in Oligonucleotide Manufacturing.
J Org Chem. 2021 Jan 1;86(1):49-61. doi: 10.1021/acs.joc.0c02291. Epub 2020 Nov 30.
2
Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production.
J Org Chem. 2019 Apr 19;84(8):4615-4628. doi: 10.1021/acs.joc.8b03001. Epub 2019 Mar 22.
5
Significance of Green Synthetic Chemistry from a Pharmaceutical Perspective.
Curr Pharm Des. 2020;26(45):5767-5782. doi: 10.2174/1381612826666200928160851.
6
Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies.
Mol Pharm. 2020 Jul 6;17(7):2232-2244. doi: 10.1021/acs.molpharmaceut.0c00198. Epub 2020 Jun 10.
7
The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow.
Acc Chem Res. 2020 Jul 21;53(7):1330-1341. doi: 10.1021/acs.accounts.0c00199. Epub 2020 Jun 16.
8
Modern approaches to therapeutic oligonucleotide manufacturing.
Science. 2024 Apr 12;384(6692):eadl4015. doi: 10.1126/science.adl4015.
9

引用本文的文献

1
Selective Acetalization in Pyridine: A Sustainable 5'--(2-Methoxypropyl) Protecting Group in the Synthesis of Nucleic Acid Analogs.
Org Lett. 2025 Aug 1;27(30):8251-8256. doi: 10.1021/acs.orglett.5c02400. Epub 2025 Jul 20.
2
RNA chemistry and therapeutics.
Nat Rev Drug Discov. 2025 Jul 14. doi: 10.1038/s41573-025-01237-x.
4
Scalable Membrane Enabled One-Pot Liquid-Phase Oligonucleotide Synthesis.
Org Process Res Dev. 2025 May 13;29(6):1577-1592. doi: 10.1021/acs.oprd.5c00117. eCollection 2025 Jun 20.
5
RNA Therapeutics: Focus on Antisense Oligonucleotides in the Nervous System.
Biomol Ther (Seoul). 2025 Jun 19. doi: 10.4062/biomolther.2025.022.
6
Gold Nanoparticle-DNA Conjugates: An Enzymatic DNA Synthesis Platform.
ACS Omega. 2025 May 14;10(20):20452-20464. doi: 10.1021/acsomega.5c00645. eCollection 2025 May 27.
7
Engineering Considerations for Developing Next-Generation Oligonucleotide Therapeutics.
Nat Chem Eng. 2024 Dec;1(12):741-750. doi: 10.1038/s44286-024-00152-z. Epub 2024 Dec 23.
9
Advances in Mechanochemical Methods for One-Pot Multistep Organic Synthesis.
Chemistry. 2025 Jun 17;31(34):e202500798. doi: 10.1002/chem.202500798. Epub 2025 May 24.

本文引用的文献

1
Technical Considerations for Use of Oligonucleotide Solution API.
Nucleic Acid Ther. 2020 Aug;30(4):189-197. doi: 10.1089/nat.2020.0846. Epub 2020 May 6.
2
Enzymatic Synthesis of Designer DNA Using Cyclic Reversible Termination and a Universal Template.
ACS Synth Biol. 2020 Feb 21;9(2):283-293. doi: 10.1021/acssynbio.9b00315. Epub 2020 Jan 14.
3
Liquid-Phase Oligonucleotide Synthesis: Past, Present, and Future Predictions.
Curr Protoc Nucleic Acid Chem. 2019 Jun;77(1):e82. doi: 10.1002/cpnc.82. Epub 2019 Mar 28.
4
Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production.
J Org Chem. 2019 Apr 19;84(8):4615-4628. doi: 10.1021/acs.joc.8b03001. Epub 2019 Mar 22.
5
Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids.
Chembiochem. 2019 Apr 1;20(7):860-871. doi: 10.1002/cbic.201800658. Epub 2019 Jan 25.
6
Targeted delivery of antisense oligonucleotides to pancreatic β-cells.
Sci Adv. 2018 Oct 17;4(10):eaat3386. doi: 10.1126/sciadv.aat3386. eCollection 2018 Oct.
7
Patisiran: First Global Approval.
Drugs. 2018 Oct;78(15):1625-1631. doi: 10.1007/s40265-018-0983-6.
8
Solid-Phase Synthesis of Phosphorothioate Oligonucleotides Using Sulfurization Byproducts for in Situ Capping.
J Org Chem. 2018 Oct 5;83(19):11577-11585. doi: 10.1021/acs.joc.8b01553. Epub 2018 Sep 14.
9
Introduction of a process mass intensity metric for biologics.
N Biotechnol. 2019 Mar 25;49:37-42. doi: 10.1016/j.nbt.2018.07.005. Epub 2018 Aug 16.
10
Unlocking P(V): Reagents for chiral phosphorothioate synthesis.
Science. 2018 Sep 21;361(6408):1234-1238. doi: 10.1126/science.aau3369. Epub 2018 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验