Suppr超能文献

使用社交机器人评估野外的面部表情。

Using a Social Robot to Evaluate Facial Expressions in the Wild.

机构信息

Departament de Matemàtiques i Informàtica, Universitat Illes Balears, 07122 Palma de Mallorca, Spain.

出版信息

Sensors (Basel). 2020 Nov 24;20(23):6716. doi: 10.3390/s20236716.

Abstract

In this work an affective computing approach is used to study the human-robot interaction using a social robot to validate facial expressions in the wild. Our global goal is to evaluate that a social robot can be used to interact in a convincing manner with human users to recognize their potential emotions through facial expressions, contextual cues and bio-signals. In particular, this work is focused on analyzing facial expression. A social robot is used to validate a pre-trained convolutional neural network (CNN) which recognizes facial expressions. Facial expression recognition plays an important role in recognizing and understanding human emotion by robots. Robots equipped with expression recognition capabilities can also be a useful tool to get feedback from the users. The designed experiment allows evaluating a trained neural network in facial expressions using a social robot in a real environment. In this paper a comparison between the CNN accuracy and human experts is performed, in addition to analyze the interaction, attention and difficulty to perform a particular expression by 29 non-expert users. In the experiment, the robot leads the users to perform different facial expressions in motivating and entertaining way. At the end of the experiment, the users are quizzed about their experience with the robot. Finally, a set of experts and the CNN classify the expressions. The obtained results allow affirming that the use of social robot is an adequate interaction paradigm for the evaluation on facial expression.

摘要

在这项工作中,我们使用情感计算方法来研究使用社交机器人在野外验证面部表情的人机交互。我们的总体目标是评估社交机器人是否可以用于与人类用户进行令人信服的交互,通过面部表情、上下文线索和生物信号来识别他们潜在的情绪。特别是,这项工作侧重于分析面部表情。我们使用社交机器人来验证预训练的卷积神经网络(CNN),该网络可以识别面部表情。面部表情识别在机器人识别和理解人类情感方面起着重要作用。配备表情识别功能的机器人也可以成为从用户那里获得反馈的有用工具。设计的实验允许使用社交机器人在真实环境中评估经过训练的神经网络在面部表情方面的表现。在本文中,我们对 CNN 准确性和人类专家进行了比较,此外还分析了 29 位非专业用户在执行特定表情时的交互、注意力和难度。在实验中,机器人以激励和娱乐的方式引导用户执行不同的面部表情。实验结束后,用户会被询问他们与机器人的互动体验。最后,一组专家和 CNN 对表情进行分类。所得结果证实,使用社交机器人是评估面部表情的一种合适的交互范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9889/7727691/c97aa900900b/sensors-20-06716-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验