文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Catechins within the Biopolymer Matrix-Design Concepts and Bioactivity Prospects.

作者信息

Yaneva Zvezdelina, Ivanova Donika

机构信息

Chemistry Unit, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria.

出版信息

Antioxidants (Basel). 2020 Nov 26;9(12):1180. doi: 10.3390/antiox9121180.


DOI:10.3390/antiox9121180
PMID:33256098
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7761086/
Abstract

Epidemiological studies and clinical investigations proposed that catechins extracts alone may not provide a sufficient level of bioactivities and promising therapeutic effects to achieve health benefits due to a number of constraints related to poor oral absorption, limited bioavailability, sensitivity to oxidation, etc. Modern scientific studies have reported numerous techniques for the design of micro- and nano-bio-delivery systems as novel and promising strategies to overcome these obstacles and to enhance catechins' therapeutic activity. The objective assessment of their benefits, however, requires a critical comparative estimation of the advantages and disadvantages of the designed catechins-biocarrier systems, their biological activities and safety administration aspects. In this respect, the present review objectively outlines, compares and assesses the recent advances related to newly developed design concepts of catechins' encapsulation into various biopolymer carriers and their release behaviour, with a special emphasis on the specific physiological biofunctionalities of the innovative bioflavonoid/biopolymer delivery systems.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/6cf508107af8/antioxidants-09-01180-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/f887462802db/antioxidants-09-01180-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/e6b1b82fe5ea/antioxidants-09-01180-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/86f4ee787b5a/antioxidants-09-01180-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/a05fcc1620ac/antioxidants-09-01180-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/fe2bc91c323d/antioxidants-09-01180-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/877d73347c4a/antioxidants-09-01180-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/7be9b5c41932/antioxidants-09-01180-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/6cf508107af8/antioxidants-09-01180-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/f887462802db/antioxidants-09-01180-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/e6b1b82fe5ea/antioxidants-09-01180-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/86f4ee787b5a/antioxidants-09-01180-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/a05fcc1620ac/antioxidants-09-01180-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/fe2bc91c323d/antioxidants-09-01180-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/877d73347c4a/antioxidants-09-01180-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/7be9b5c41932/antioxidants-09-01180-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60d8/7761086/6cf508107af8/antioxidants-09-01180-g008.jpg

相似文献

[1]
Catechins within the Biopolymer Matrix-Design Concepts and Bioactivity Prospects.

Antioxidants (Basel). 2020-11-26

[2]
Nano- and micro-particles for delivery of catechins: Physical and biological performance.

Crit Rev Food Sci Nutr. 2018-1-18

[3]
Drug-delivery systems of green tea catechins for improved stability and bioavailability.

Curr Med Chem. 2013

[4]
Development of nano-encapsulated green tea catechins: Studies on optimization, characterization, release dynamics, and in-vitro toxicity.

J Food Biochem. 2021-11

[5]
Alginate-based drug oral targeting using bio-micro/nano encapsulation technologies.

Expert Opin Drug Deliv. 2020-10

[6]
Bioavailability of Tea Catechins and Its Improvement.

Molecules. 2018-9-13

[7]
The intestinal-level metabolic benefits of green tea catechins: Mechanistic insights from pre-clinical and clinical studies.

Phytomedicine. 2024-1

[8]
Nanoencapsulation of Tea Catechins for Enhancing Skin Absorption and Therapeutic Efficacy.

AAPS PharmSciTech. 2022-7-8

[9]
Catechins as Model Bioactive Compounds for Biomedical Applications.

Curr Pharm Des. 2020

[10]
Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability.

Crit Rev Food Sci Nutr. 2019-7-1

引用本文的文献

[1]
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential.

Pharmaceutics. 2025-7-30

[2]
Clinoptilolite Microparticles as Carriers of Catechin-Rich Extracts: Microencapsulation and In Vitro Release Study.

Molecules. 2021-3-16

本文引用的文献

[1]
Lecithin-chitosan-TPGS nanoparticles as nanocarriers of (-)-epicatechin enhanced its anticancer activity in breast cancer cells.

RSC Adv. 2018-10-10

[2]
Recent advances in phenolic-protein conjugates: synthesis, characterization, biological activities and potential applications.

RSC Adv. 2019-11-4

[3]
Scientific opinion on the safety of green tea catechins.

EFSA J. 2018-4-18

[4]
Electrospun Composite Nanofibrous Materials Based on (Poly)-Phenol-Polysaccharide Formulations for Potential Wound Treatment.

Materials (Basel). 2020-6-9

[5]
Size-controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy.

J Mater Chem B. 2018-3-7

[6]
Production and characterization of catechin-loaded electrospun nanofibers from Azivash gum- polyvinyl alcohol.

Carbohydr Polym. 2020-2-11

[7]
Trehalose-Conjugated, Catechin-Loaded Polylactide Nanoparticles for Improved Neuroprotection against Intracellular Polyglutamine Aggregates.

Biomacromolecules. 2020-4-13

[8]
Epigallocatechin-3-Gallate Toxicity in Children: A Potential and Current Toxicological Event in the Differential Diagnosis With Virus-Triggered Fulminant Hepatic Failure.

Front Pharmacol. 2020-1-29

[9]
Inhalable Spray-Dried Chondroitin Sulphate Microparticles: Effect of Different Solvents on Particle Properties and Drug Activity.

Polymers (Basel). 2020-2-12

[10]
Nanodelivery of Natural Antioxidants: An Anti-aging Perspective.

Front Bioeng Biotechnol. 2020-1-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索