School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom.
School of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom.
J Biol Chem. 2021 Jan-Jun;296:100126. doi: 10.1074/jbc.RA120.016461. Epub 2020 Dec 3.
Class A serine β-lactamases (SBLs) are key antibiotic resistance determinants in Gram-negative bacteria. SBLs neutralize β-lactams via a hydrolytically labile covalent acyl-enzyme intermediate. Klebsiella pneumoniae carbapenemase (KPC) is a widespread SBL that hydrolyzes carbapenems, the most potent β-lactams; known KPC variants differ in turnover of expanded-spectrum oxyimino-cephalosporins (ESOCs), for example, cefotaxime and ceftazidime. Here, we compare ESOC hydrolysis by the parent enzyme KPC-2 and its clinically observed double variant (P104R/V240G) KPC-4. Kinetic analyses show that KPC-2 hydrolyzes cefotaxime more efficiently than the bulkier ceftazidime, with improved ESOC turnover by KPC-4 resulting from enhanced turnover (k), rather than altered K values. High-resolution crystal structures of ESOC acyl-enzyme complexes with deacylation-deficient (E166Q) KPC-2 and KPC-4 mutants show that ceftazidime acylation causes rearrangement of three loops; the Ω, 240, and 270 loops, which border the active site. However, these rearrangements are less pronounced in the KPC-4 than the KPC-2 ceftazidime acyl-enzyme and are not observed in the KPC-2:cefotaxime acyl-enzyme. Molecular dynamics simulations of KPC:ceftazidime acyl-enyzmes reveal that the deacylation general base E166, located on the Ω loop, adopts two distinct conformations in KPC-2, either pointing "in" or "out" of the active site; with only the "in" form compatible with deacylation. The "out" conformation was not sampled in the KPC-4 acyl-enzyme, indicating that efficient ESOC breakdown is dependent upon the ordering and conformation of the KPC Ω loop. The results explain how point mutations expand the activity spectrum of the clinically important KPC SBLs to include ESOCs through their effects on the conformational dynamics of the acyl-enzyme intermediate.
A 类丝氨酸β-内酰胺酶(SBLs)是革兰氏阴性菌中关键的抗生素耐药决定因素。SBLs 通过水解不稳定的共价酰化酶中间产物来中和β-内酰胺类抗生素。肺炎克雷伯菌碳青霉烯酶(KPC)是一种广泛存在的 SBL,可水解碳青霉烯类抗生素,这是最有效的β-内酰胺类抗生素;已知的 KPC 变体在扩展谱氧肟基头孢菌素(ESOCs)的周转率上有所不同,例如头孢噻肟和头孢他啶。在这里,我们比较了亲本酶 KPC-2 和其临床观察到的双重变体(P104R/V240G)KPC-4 对 ESOC 的水解作用。动力学分析表明,KPC-2 比头孢他啶更有效地水解头孢噻肟,而 KPC-4 通过增强周转率(k)而不是改变 K 值来提高 ESOC 的周转率。ESOC 酰化酶复合物的高分辨率晶体结构与去酰化缺陷(E166Q)KPC-2 和 KPC-4 突变体表明,头孢他啶酰化导致三个环的重排;Ω、240 和 270 环,它们位于活性位点的边界。然而,这些重排在 KPC-4 中的头孢他啶酰化酶中不如 KPC-2 中的明显,在 KPC-2:头孢噻肟酰化酶中也观察不到。KPC:头孢他啶酰化酶的分子动力学模拟表明,去酰化的通用碱 E166 位于 Ω 环上,在 KPC-2 中采用两种不同的构象,要么指向“内”或“外”活性位点;只有“内”构象与去酰化兼容。在 KPC-4 酰化酶中没有采样到“外”构象,这表明 ESOC 的有效分解依赖于 KPC Ω 环的有序性和构象。这些结果解释了点突变如何通过影响酰化酶中间产物的构象动力学,将临床上重要的 KPC SBLs 的活性谱扩展到包括 ESOCs。