Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
J Biol Chem. 2012 Sep 14;287(38):31783-93. doi: 10.1074/jbc.M112.348540. Epub 2012 Jul 26.
Gram-negative bacteria harboring KPC-2, a class A β-lactamase, are resistant to all β-lactam antibiotics and pose a major public health threat. Arg-164 is a conserved residue in all class A β-lactamases and is located in the solvent-exposed Ω-loop of KPC-2. To probe the role of this amino acid in KPC-2, we performed site-saturation mutagenesis. When compared with wild type, 11 of 19 variants at position Arg-164 in KPC-2 conferred increased resistance to the oxyimino-cephalosporin, ceftazidime (minimum inhibitory concentration; 32→128 mg/liter) when expressed in Escherichia coli. Using the R164S variant of KPC-2 as a representative β-lactamase for more detailed analysis, we observed only a modest 25% increase in k(cat)/K(m) for ceftazidime (0.015→0.019 μm(-1) s(-1)). Employing pre-steady-state kinetics and mass spectrometry, we determined that acylation is rate-limiting for ceftazidime hydrolysis by KPC-2, whereas deacylation is rate-limiting in the R164S variant, leading to accumulation of acyl-enzyme at steady-state. CD spectroscopy revealed that a conformational change occurred in the turnover of ceftazidime by KPC-2, but not the R164S variant, providing evidence for a different form of the enzyme at steady state. Molecular models constructed to explain these findings suggest that ceftazidime adopts a unique conformation, despite preservation of Ω-loop structure. We propose that the R164S substitution in KPC-2 enhances ceftazidime resistance by proceeding through "covalent trapping" of the substrate by a deacylation impaired enzyme with a lower K(m). Future antibiotic design must consider the distinctive behavior of the Ω-loop of KPC-2.
携带有 KPC-2 的革兰氏阴性菌对所有β-内酰胺类抗生素都具有耐药性,对公共健康构成了重大威胁。Arg-164 是所有 A 类β-内酰胺酶的保守残基,位于 KPC-2 的溶剂暴露的Ω环中。为了探究该氨基酸在 KPC-2 中的作用,我们进行了定点饱和突变。与野生型相比,KPC-2 中 Arg-164 位置的 19 个变体中的 11 个变体赋予了对氧肟头孢菌素头孢他啶的更高抗性(最小抑菌浓度;32→128mg/L),当在大肠杆菌中表达时。使用 KPC-2 的 R164S 变体作为代表性β-内酰胺酶进行更详细的分析,我们观察到头孢他啶的 k(cat)/K(m) 仅适度增加 25%(0.015→0.019μm(-1)s(-1))。采用预稳态动力学和质谱法,我们确定酰化是 KPC-2 水解头孢他啶的限速步骤,而在 R164S 变体中脱酰化是限速步骤,导致在稳态时酰化酶的积累。CD 光谱学揭示了 KPC-2 对头孢他啶的周转过程中发生了构象变化,但 R164S 变体没有,这为在稳态时存在不同形式的酶提供了证据。为了解释这些发现而构建的分子模型表明,尽管保留了Ω环结构,但头孢他啶采用了独特的构象。我们提出,KPC-2 中的 R164S 取代通过使脱酰化受损的酶以较低的 K(m)“共价捕获”底物来增强头孢他啶的耐药性。未来的抗生素设计必须考虑到 KPC-2 的Ω环的独特行为。