School of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom.
School of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31808-31816. doi: 10.1073/pnas.2010906117. Epub 2020 Nov 30.
The universally conserved Sec system is the primary method cells utilize to transport proteins across membranes. Until recently, measuring the activity-a prerequisite for understanding how biological systems work-has been limited to discontinuous protein transport assays with poor time resolution or reported by large, nonnatural tags that perturb the process. The development of an assay based on a split superbright luciferase (NanoLuc) changed this. Here, we exploit this technology to unpick the steps that constitute posttranslational protein transport in bacteria. Under the conditions deployed, the transport of a model preprotein substrate (proSpy) occurs at 200 amino acids (aa) per minute, with SecA able to dissociate and rebind during transport. Prior to that, there is no evidence for a distinct, rate-limiting initiation event. Kinetic modeling suggests that SecA-driven transport activity is best described by a series of large (∼30 aa) steps, each coupled to hundreds of ATP hydrolysis events. The features we describe are consistent with a nondeterministic motor mechanism, such as a Brownian ratchet.
普遍保守的 Sec 系统是细胞利用的将蛋白质跨膜运输的主要方法。直到最近,测量活性——理解生物系统如何工作的先决条件——一直受到限制,只能进行不连续的蛋白质运输测定,其时间分辨率较差,或者受到较大的、会干扰过程的非天然标签的限制。基于分裂超亮萤光素酶 (NanoLuc) 的测定方法的发展改变了这种情况。在这里,我们利用这项技术来剖析构成细菌中翻译后蛋白质运输的步骤。在部署的条件下,模型前体底物 (proSpy) 的运输速度为每分钟 200 个氨基酸 (aa),SecA 能够在运输过程中解离和重新结合。在此之前,没有证据表明存在独特的、限速的起始事件。动力学模型表明,SecA 驱动的运输活性最好用一系列大的(∼30 aa)步骤来描述,每个步骤都与数百个 ATP 水解事件耦合。我们描述的特征与非确定的马达机制一致,例如布朗棘轮。