Suppr超能文献

目标驱动的模块化神经网络预测抓握过程中的顶额叶神经动力学。

A goal-driven modular neural network predicts parietofrontal neural dynamics during grasping.

机构信息

Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, 37077 Goettingen, Germany.

Brain and Mind Institute, Western University, London, ON N6A 5B7, Canada.

出版信息

Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):32124-32135. doi: 10.1073/pnas.2005087117. Epub 2020 Nov 30.

Abstract

One of the primary ways we interact with the world is using our hands. In macaques, the circuit spanning the anterior intraparietal area, the hand area of the ventral premotor cortex, and the primary motor cortex is necessary for transforming visual information into grasping movements. However, no comprehensive model exists that links all steps of processing from vision to action. We hypothesized that a recurrent neural network mimicking the modular structure of the anatomical circuit and trained to use visual features of objects to generate the required muscle dynamics used by primates to grasp objects would give insight into the computations of the grasping circuit. Internal activity of modular networks trained with these constraints strongly resembled neural activity recorded from the grasping circuit during grasping and paralleled the similarities between brain regions. Network activity during the different phases of the task could be explained by linear dynamics for maintaining a distributed movement plan across the network in the absence of visual stimulus and then generating the required muscle kinematics based on these initial conditions in a module-specific way. These modular models also outperformed alternative models at explaining neural data, despite the absence of neural data during training, suggesting that the inputs, outputs, and architectural constraints imposed were sufficient for recapitulating processing in the grasping circuit. Finally, targeted lesioning of modules produced deficits similar to those observed in lesion studies of the grasping circuit, providing a potential model for how brain regions may coordinate during the visually guided grasping of objects.

摘要

我们与世界互动的主要方式之一是使用双手。在猕猴中,从前内顶叶区、腹侧前运动皮层的手部区域以及初级运动皮层跨越的回路对于将视觉信息转化为抓握运动是必要的。然而,目前还没有一个综合的模型将从视觉到动作的所有处理步骤联系起来。我们假设,一个模仿解剖学回路模块化结构的递归神经网络,经过训练可以使用物体的视觉特征来生成灵长类动物抓握物体所需的肌肉动力学,这将有助于深入了解抓握回路的计算。用这些约束条件训练的模块化网络的内部活动强烈地类似于抓握回路在抓握过程中记录的神经活动,并且与大脑区域之间的相似性相平行。在任务的不同阶段,网络活动可以用线性动力学来解释,这种动力学可以在没有视觉刺激的情况下,在网络中保持分布式运动计划,然后根据这些初始条件以特定于模块的方式生成所需的肌肉运动学。尽管在训练过程中没有神经数据,但这些模块化模型在解释神经数据方面的表现也优于替代模型,这表明输入、输出和所施加的架构约束足以再现抓握回路中的处理过程。最后,模块的靶向损毁产生的缺陷类似于抓握回路损毁研究中观察到的缺陷,为大脑区域在视觉引导的物体抓握过程中如何协调提供了一个潜在的模型。

相似文献

1
A goal-driven modular neural network predicts parietofrontal neural dynamics during grasping.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):32124-32135. doi: 10.1073/pnas.2005087117. Epub 2020 Nov 30.
2
Decoding Grasping Movements from the Parieto-Frontal Reaching Circuit in the Nonhuman Primate.
Cereb Cortex. 2018 Apr 1;28(4):1245-1259. doi: 10.1093/cercor/bhx037.
3
Predicting Reaction Time from the Neural State Space of the Premotor and Parietal Grasping Network.
J Neurosci. 2015 Aug 12;35(32):11415-32. doi: 10.1523/JNEUROSCI.1714-15.2015.
4
Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
J Neurosci. 2017 Feb 15;37(7):1733-1746. doi: 10.1523/JNEUROSCI.1537-16.2016. Epub 2017 Jan 11.
5
Parieto-frontal connectivity during visually guided grasping.
J Neurosci. 2007 Oct 31;27(44):11877-87. doi: 10.1523/JNEUROSCI.3923-07.2007.
6
Human cortical control of hand movements: parietofrontal networks for reaching, grasping, and pointing.
Neuroscientist. 2010 Aug;16(4):388-407. doi: 10.1177/1073858410375468.
7
Neural Dynamics of Variable Grasp-Movement Preparation in the Macaque Frontoparietal Network.
J Neurosci. 2018 Jun 20;38(25):5759-5773. doi: 10.1523/JNEUROSCI.2557-17.2018. Epub 2018 May 24.
9
Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke.
Brain. 2012 Feb;135(Pt 2):596-614. doi: 10.1093/brain/awr331. Epub 2012 Jan 9.

引用本文的文献

1
Tactile exploration and imagery elicit distinct neural dynamics in the parietal cortical network.
Front Neurosci. 2025 Jul 24;19:1621383. doi: 10.3389/fnins.2025.1621383. eCollection 2025.
2
A neural manifold view of the brain.
Nat Neurosci. 2025 Jul 28. doi: 10.1038/s41593-025-02031-z.
3
Modular architecture confers robustness to damage and facilitates recovery in spiking neural networks modeling neurons.
Front Neurosci. 2025 Jun 19;19:1570783. doi: 10.3389/fnins.2025.1570783. eCollection 2025.
4
Structure of activity in multiregion recurrent neural networks.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2404039122. doi: 10.1073/pnas.2404039122. Epub 2025 Mar 7.
5
A neural implementation model of feedback-based motor learning.
Nat Commun. 2025 Feb 20;16(1):1805. doi: 10.1038/s41467-024-54738-5.
7
Parallel development of social behavior in biological and artificial fish.
Nat Commun. 2024 Dec 5;15(1):10613. doi: 10.1038/s41467-024-52307-4.
8
Decoding the brain: From neural representations to mechanistic models.
Cell. 2024 Oct 17;187(21):5814-5832. doi: 10.1016/j.cell.2024.08.051.
9
Reach-dependent reorientation of rotational dynamics in motor cortex.
Nat Commun. 2024 Aug 15;15(1):7007. doi: 10.1038/s41467-024-51308-7.

本文引用的文献

2
Cortical pattern generation during dexterous movement is input-driven.
Nature. 2020 Jan;577(7790):386-391. doi: 10.1038/s41586-019-1869-9. Epub 2019 Dec 25.
3
A deep learning framework for neuroscience.
Nat Neurosci. 2019 Nov;22(11):1761-1770. doi: 10.1038/s41593-019-0520-2. Epub 2019 Oct 28.
4
Recurrence is required to capture the representational dynamics of the human visual system.
Proc Natl Acad Sci U S A. 2019 Oct 22;116(43):21854-21863. doi: 10.1073/pnas.1905544116. Epub 2019 Oct 7.
5
Task-Dependent Changes in the Large-Scale Dynamics and Necessity of Cortical Regions.
Neuron. 2019 Nov 20;104(4):810-824.e9. doi: 10.1016/j.neuron.2019.08.025. Epub 2019 Sep 26.
6
Emergent modular neural control drives coordinated motor actions.
Nat Neurosci. 2019 Jul;22(7):1122-1131. doi: 10.1038/s41593-019-0407-2. Epub 2019 May 27.
7
Neural population control via deep image synthesis.
Science. 2019 May 3;364(6439). doi: 10.1126/science.aav9436.
8
Evidence that recurrent circuits are critical to the ventral stream's execution of core object recognition behavior.
Nat Neurosci. 2019 Jun;22(6):974-983. doi: 10.1038/s41593-019-0392-5. Epub 2019 Apr 29.
9
Task representations in neural networks trained to perform many cognitive tasks.
Nat Neurosci. 2019 Feb;22(2):297-306. doi: 10.1038/s41593-018-0310-2. Epub 2019 Jan 14.
10
Motor primitives in space and time via targeted gain modulation in cortical networks.
Nat Neurosci. 2018 Dec;21(12):1774-1783. doi: 10.1038/s41593-018-0276-0. Epub 2018 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验