Suppr超能文献

底辟作用促进游离态甲烷通过水合物稳定带运移。

Crustal fingering facilitates free-gas methane migration through the hydrate stability zone.

机构信息

Department of Earth and Planetary Science, University of California, Berkeley, CA 94670;

Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125.

出版信息

Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31660-31664. doi: 10.1073/pnas.2011064117. Epub 2020 Nov 30.

Abstract

Widespread seafloor methane venting has been reported in many regions of the world oceans in the past decade. Identifying and quantifying where and how much methane is being released into the ocean remains a major challenge and a critical gap in assessing the global carbon budget and predicting future climate [C. Ruppel, J. D. Kessler. Rev. Geophys. 55, 126-168 (2017)]. Methane hydrate ([Formula: see text]) is an ice-like solid that forms from methane-water mixture under elevated-pressure and low-temperature conditions typical of the deep marine settings (>600-m depth), often referred to as the hydrate stability zone (HSZ). Wide-ranging field evidence indicates that methane seepage often coexists with hydrate-bearing sediments within the HSZ, suggesting that hydrate formation may play an important role during the gas-migration process. At a depth that is too shallow for hydrate formation, existing theories suggest that gas migration occurs via capillary invasion and/or initiation and propagation of fractures (Fig. 1). Within the HSZ, however, a theoretical mechanism that addresses the way in which hydrate formation participates in the gas-percolation process is missing. Here, we study, experimentally and computationally, the mechanics of gas percolation under hydrate-forming conditions. We uncover a phenomenon--and demonstrate how it may control methane-gas migration in ocean sediments within the HSZ.

摘要

在过去的十年中,世界海洋的许多地区都报告了广泛的海底甲烷排放。确定和量化甲烷在何处以及以多少量释放到海洋中仍然是一个主要挑战,也是评估全球碳预算和预测未来气候的关键差距[C. Ruppel, J. D. Kessler. Rev. Geophys. 55, 126-168 (2017)]。甲烷水合物([Formula: see text])是一种冰状固体,由甲烷-水混合物在高压和低温条件下形成,这些条件通常是深海环境的特征(>600 米深),通常称为水合物稳定带(HSZ)。广泛的野外证据表明,甲烷渗漏通常与 HSZ 内的含水合物沉积物共存,这表明水合物的形成可能在气体迁移过程中发挥重要作用。在水合物形成过浅的深度,现有理论表明气体迁移是通过毛管侵入和/或裂缝的形成和扩展发生的(图 1)。然而,在 HSZ 内,缺乏一种解决水合物形成如何参与气体渗透过程的理论机制。在这里,我们通过实验和计算研究了水合物形成条件下气体渗流的力学。我们发现了一种现象,并展示了它如何控制 HSZ 内海洋沉积物中甲烷气体的迁移。

相似文献

1
Crustal fingering facilitates free-gas methane migration through the hydrate stability zone.底辟作用促进游离态甲烷通过水合物稳定带运移。
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31660-31664. doi: 10.1073/pnas.2011064117. Epub 2020 Nov 30.
10
Pore-network study of methane hydrate dissociation.甲烷水合物分解的孔隙网络研究
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 2):056303. doi: 10.1103/PhysRevE.74.056303. Epub 2006 Nov 8.

引用本文的文献

1
A Phase-Field Model for Wet Snow Metamorphism.湿雪变质作用的相场模型。
Cryst Growth Des. 2024 Sep 13;24(19):7808-7821. doi: 10.1021/acs.cgd.4c00539. eCollection 2024 Oct 2.
2
Frictional fluid instabilities shaped by viscous forces.由粘性力塑造的摩擦流不稳定性。
Nat Commun. 2023 May 26;14(1):3044. doi: 10.1038/s41467-023-38648-6.

本文引用的文献

6
Interfacial phenomena in gas hydrate systems.气体水合物体系中的界面现象。
Chem Soc Rev. 2016 Mar 21;45(6):1678-90. doi: 10.1039/c5cs00791g.
10
Capillary fracturing in granular media.颗粒介质中的毛细压裂。
Phys Rev Lett. 2012 Jun 29;108(26):264504. doi: 10.1103/PhysRevLett.108.264504. Epub 2012 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验