Suppr超能文献

吖啶鎓光催化剂在室温下通过可见光光氧化还原催化二芳基醚的C-O键断裂

Visible-light photoredox-catalyzed C-O bond cleavage of diaryl ethers by acridinium photocatalysts at room temperature.

作者信息

Tan Fang-Fang, He Xiao-Ya, Tian Wan-Fa, Li Yang

机构信息

Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, People's Republic of China.

State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.

出版信息

Nat Commun. 2020 Nov 30;11(1):6126. doi: 10.1038/s41467-020-19944-x.

Abstract

Cleavage of C-O bonds in lignin can afford the renewable aryl sources for fine chemicals. However, the high bond energies of these C-O bonds, especially the 4-O-5-type diaryl ether C-O bonds (~314 kJ/mol) make the cleavage very challenging. Here, we report visible-light photoredox-catalyzed C-O bond cleavage of diaryl ethers by an acidolysis with an aryl carboxylic acid and a following one-pot hydrolysis. Two molecules of phenols are obtained from one molecule of diaryl ether at room temperature. The aryl carboxylic acid used for the acidolysis can be recovered. The key to success of the acidolysis is merging visible-light photoredox catalysis using an acridinium photocatalyst and Lewis acid catalysis using Cu(TMHD). Preliminary mechanistic studies indicate that the catalytic cycle occurs via a rare selective electrophilic attack of the generated aryl carboxylic radical on the electron-rich aryl ring of the diphenyl ether. This transformation is applied to a gram-scale reaction and the model of 4-O-5 lignin linkages.

摘要

木质素中碳 - 氧键的断裂可为精细化学品提供可再生的芳基来源。然而,这些碳 - 氧键的高键能,尤其是4 - O - 5型二芳基醚碳 - 氧键(约314 kJ/mol)使得其断裂极具挑战性。在此,我们报道了通过与芳基羧酸进行酸解并随后一锅水解,以可见光光氧化还原催化二芳基醚的碳 - 氧键断裂。在室温下,从一分子二芳基醚可得到两分子酚。用于酸解的芳基羧酸可回收。酸解成功的关键在于将使用吖啶鎓光催化剂的可见光光氧化还原催化与使用Cu(TMHD)的路易斯酸催化相结合。初步机理研究表明,催化循环通过所生成的芳基羧基自由基对二苯醚富电子芳环的罕见选择性亲电攻击而发生。该转化应用于克级反应以及4 - O - 5木质素连接模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74a8/7705023/2bd8bb793881/41467_2020_19944_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验