一种用于评估肝脂肪变性和纤维化程度的便携式单面磁共振传感器。

A portable single-sided magnetic-resonance sensor for the grading of liver steatosis and fibrosis.

机构信息

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nat Biomed Eng. 2021 Mar;5(3):240-251. doi: 10.1038/s41551-020-00638-0. Epub 2020 Nov 30.

Abstract

Low-cost non-invasive diagnostic tools for staging the progression of non-alcoholic chronic liver failure from fatty liver disease to steatohepatitis are unavailable. Here, we describe the development and performance of a portable single-sided magnetic-resonance sensor for grading liver steatosis and fibrosis using diffusion-weighted multicomponent T2 relaxometry. In a diet-induced mouse model of non-alcoholic fatty liver disease, the sensor achieved overall accuracies of 92% (Cohen's kappa, κ = 0.89) and 86% (κ = 0.78) in the ex vivo grading of steatosis and fibrosis, respectively. Localization of the measurements in living mice through frequency-dependent spatial encoding led to an overall accuracy of 87% (κ = 0.81) for the grading of steatosis. In human liver samples, the sensor graded steatosis with an overall accuracy of 93% (κ = 0.88). The use of T2 relaxometry as a sensitive measure in fully automated low-cost magnetic-resonance devices at the point of care would alleviate the accessibility and cost limits of magnetic-resonance imaging for diagnosing liver disease and assessing liver health before liver transplantation.

摘要

目前还没有用于从脂肪肝进展到脂肪性肝炎的非酒精性慢性肝衰竭分期的低成本无创诊断工具。在这里,我们描述了一种用于使用扩散加权多分量 T2 弛豫度对肝脂肪变性和纤维化进行分级的便携式单侧面磁共振传感器的开发和性能。在非酒精性脂肪性肝病的饮食诱导的小鼠模型中,该传感器在体外脂肪变性和纤维化的分级中分别达到了 92%(Cohen 的 κ,κ=0.89)和 86%(κ=0.78)的总体准确性。通过频率依赖性空间编码对活鼠体内的测量进行定位,使脂肪变性分级的总体准确性达到 87%(κ=0.81)。在人类肝样本中,该传感器对脂肪变性的分级总准确率为 93%(κ=0.88)。T2 弛豫度作为一种敏感指标,应用于完全自动化的低成本磁共振设备中,可在现场诊断肝脏疾病,并在肝移植前评估肝脏健康,从而缓解磁共振成像在诊断肝脏疾病和评估肝脏健康方面的可及性和成本限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索