Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
Department of Psychiatry, Amsterdam UMC, Amsterdam Public Health Research Institute, Vrije Universiteit, Amsterdam, Netherlands.
J Med Internet Res. 2020 Dec 1;22(12):e22634. doi: 10.2196/22634.
In many countries, depressed individuals often first visit primary care settings for consultation, but a considerable number of clinically depressed patients remain unidentified. Introducing additional screening tools may facilitate the diagnostic process.
This study aimed to examine whether experience sampling method (ESM)-based measures of depressive affect and behaviors can discriminate depressed from nondepressed individuals. In addition, the added value of actigraphy-based measures was examined.
We used data from 2 samples to develop and validate prediction models. The development data set included 14 days of ESM and continuous actigraphy of currently depressed (n=43) and nondepressed individuals (n=82). The validation data set included 30 days of ESM and continuous actigraphy of currently depressed (n=27) and nondepressed individuals (n=27). Backward stepwise logistic regression analysis was applied to build the prediction models. Performance of the models was assessed with goodness-of-fit indices, calibration curves, and discriminative ability (area under the receiver operating characteristic curve [AUC]).
In the development data set, the discriminative ability was good for the actigraphy model (AUC=0.790) and excellent for both the ESM (AUC=0.991) and the combined-domains model (AUC=0.993). In the validation data set, the discriminative ability was reasonable for the actigraphy model (AUC=0.648) and excellent for both the ESM (AUC=0.891) and the combined-domains model (AUC=0.892).
ESM is a good diagnostic predictor and is easy to calculate, and it therefore holds promise for implementation in clinical practice. Actigraphy shows no added value to ESM as a diagnostic predictor but might still be useful when ESM use is restricted.
在许多国家,抑郁患者通常首先前往初级保健机构就诊,但仍有相当数量的临床抑郁患者未被识别。引入额外的筛查工具可能有助于诊断过程。
本研究旨在检验基于经验采样法(ESM)的抑郁情绪和行为测量是否能够区分抑郁和非抑郁个体。此外,还检验了基于活动记录仪的测量方法的附加价值。
我们使用来自两个样本的数据来开发和验证预测模型。开发数据集包括 14 天的 ESM 和当前抑郁(n=43)和非抑郁个体(n=82)的连续活动记录仪数据。验证数据集包括 30 天的 ESM 和当前抑郁(n=27)和非抑郁个体(n=27)的连续活动记录仪数据。应用向后逐步逻辑回归分析来构建预测模型。使用拟合优度指数、校准曲线和判别能力(接受者操作特征曲线下的面积[AUC])来评估模型的性能。
在开发数据集中,活动记录仪模型的判别能力良好(AUC=0.790),而 ESM 模型(AUC=0.991)和综合领域模型(AUC=0.993)的判别能力则非常出色。在验证数据集中,活动记录仪模型的判别能力尚可(AUC=0.648),而 ESM 模型(AUC=0.891)和综合领域模型(AUC=0.892)的判别能力则非常出色。
ESM 是一种很好的诊断预测指标,易于计算,因此有望在临床实践中得到应用。活动记录仪作为一种诊断预测指标,没有显示出比 ESM 更多的价值,但在 ESM 使用受限的情况下可能仍然有用。