IEEE Trans Cybern. 2022 Jun;52(6):4741-4750. doi: 10.1109/TCYB.2020.3035282. Epub 2022 Jun 16.
Schizophrenia seriously affects the quality of life. To date, both simple (e.g., linear discriminant analysis) and complex (e.g., deep neural network) machine-learning methods have been utilized to identify schizophrenia based on functional connectivity features. The existing simple methods need two separate steps (i.e., feature extraction and classification) to achieve the identification, which disables simultaneous tuning for the best feature extraction and classifier training. The complex methods integrate two steps and can be simultaneously tuned to achieve optimal performance, but these methods require a much larger amount of data for model training. To overcome the aforementioned drawbacks, we proposed a multikernel capsule network (MKCapsnet), which was developed by considering the brain anatomical structure. Kernels were set to match partition sizes of the brain anatomical structure in order to capture interregional connectivities at the varying scales. With the inspiration of the widely used dropout strategy in deep learning, we developed capsule dropout in the capsule layer to prevent overfitting of the model. The comparison results showed that the proposed method outperformed the state-of-the-art methods. Besides, we compared performances using different parameters and illustrated the routing process to reveal characteristics of the proposed method. MKCapsnet is promising for schizophrenia identification. Our study first utilized the capsule neural network for analyzing functional connectivity of magnetic resonance imaging (MRI) and proposed a novel multikernel capsule structure with the consideration of brain anatomical parcellation, which could be a new way to reveal brain mechanisms. In addition, we provided useful information in the parameter setting, which is informative for further studies using a capsule network for other neurophysiological signal classification.
精神分裂症严重影响生活质量。迄今为止,基于功能连接特征,已经使用了简单(例如,线性判别分析)和复杂(例如,深度神经网络)机器学习方法来识别精神分裂症。现有的简单方法需要两个单独的步骤(即特征提取和分类)来实现识别,这使得无法同时调整最佳特征提取和分类器训练。复杂方法集成了两个步骤,可以同时进行调整以实现最佳性能,但这些方法需要大量数据进行模型训练。为了克服上述缺点,我们提出了一种多内核胶囊网络(MKCapsnet),该网络是在考虑大脑解剖结构的情况下开发的。核被设置为匹配大脑解剖结构的分区大小,以捕获不同尺度的区域间连接。受深度学习中广泛使用的辍学策略的启发,我们在胶囊层中开发了胶囊辍学,以防止模型过拟合。比较结果表明,所提出的方法优于最先进的方法。此外,我们比较了使用不同参数的性能,并说明了路由过程,以揭示所提出方法的特征。MKCapsnet 有望用于精神分裂症识别。我们的研究首次利用胶囊神经网络分析磁共振成像(MRI)的功能连接,并提出了一种新的多内核胶囊结构,考虑了大脑解剖分区,这可能是揭示大脑机制的新途径。此外,我们在参数设置中提供了有用的信息,这对于使用胶囊网络对其他神经生理信号分类的进一步研究很有帮助。