Suppr超能文献

基于脑部磁共振成像的三维卷积神经网络用于精神分裂症与对照的分类

Brain MRI-based 3D Convolutional Neural Networks for Classification of Schizophrenia and Controls.

作者信息

Hu Mengjiao, Sim Kang, Zhou Juan Helen, Jiang Xudong, Guan Cuntai

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1742-1745. doi: 10.1109/EMBC44109.2020.9176610.

Abstract

Convolutional Neural Network (CNN) has been successfully applied on classification of both natural images and medical images but limited studies applied it to differentiate patients with schizophrenia from healthy controls. Given the subtle, mixed, and sparsely distributed brain atrophy patterns of schizophrenia, the capability of automatic feature learning makes CNN a powerful tool for classifying schizophrenia from controls as it removes the subjectivity in selecting relevant spatial features. To examine the feasibility of applying CNN to classification of schizophrenia and controls based on structural Magnetic Resonance Imaging (MRI), we built 3D CNN models with different architectures and compared their performance with a handcrafted feature-based machine learning approach. Support vector machine (SVM) was used as classifier and Voxel-based Morphometry (VBM) was used as feature for handcrafted feature-based machine learning. 3D CNN models with sequential architecture, inception module and residual module were trained from scratch. CNN models achieved higher cross-validation accuracy than handcrafted feature-based machine learning. Moreover, testing on an independent dataset, 3D CNN models greatly outperformed handcrafted feature-based machine learning. This study underscored the potential of CNN for identifying patients with schizophrenia using 3D brain MR images and paved the way for imaging-based individual-level diagnosis and prognosis in psychiatric disorders.

摘要

卷积神经网络(CNN)已成功应用于自然图像和医学图像的分类,但将其用于区分精神分裂症患者与健康对照的研究有限。鉴于精神分裂症患者大脑萎缩模式细微、复杂且分布稀疏,自动特征学习能力使CNN成为从对照中分类精神分裂症患者的有力工具,因为它消除了选择相关空间特征时的主观性。为了检验基于结构磁共振成像(MRI)将CNN应用于精神分裂症和对照分类的可行性,我们构建了具有不同架构的3D CNN模型,并将其性能与基于手工特征的机器学习方法进行比较。支持向量机(SVM)用作分类器,基于体素的形态计量学(VBM)用作基于手工特征的机器学习的特征。从头开始训练具有顺序架构、inception模块和残差模块的3D CNN模型。CNN模型比基于手工特征的机器学习具有更高的交叉验证准确率。此外,在独立数据集上进行测试时,3D CNN模型大大优于基于手工特征的机器学习。这项研究强调了CNN利用3D脑MR图像识别精神分裂症患者的潜力,并为精神疾病基于成像的个体水平诊断和预后铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验