文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物成因氧化铁纳米粒子增强了顽固的鹰嘴豆(Cicer arietinum L.)的愈伤组织发生和再生模式。

Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L.

机构信息

Applied Biotechnology and Genetic Engineering Lab, Department of Biological Sciences, International Islamic University, Islamabad, Pakistan.

Department of Botany, University of Poonch, Rawalakot (UPR), Rawalakot, Azad Jammu and Kashmir, Pakistan.

出版信息

PLoS One. 2020 Dec 1;15(12):e0242829. doi: 10.1371/journal.pone.0242829. eCollection 2020.


DOI:10.1371/journal.pone.0242829
PMID:33259506
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7707474/
Abstract

This study is the first report on the biosynthesized iron oxide nanoparticles (IONPs) which mediate in-vitro callus induction and shoot regeneration in economically important recalcitrant chickpea crop (Cicer arietinum L.). Here, we used leaf extract of Cymbopogon jwarancusa for the synthesis of IONPs in order to achieve a better biocompatibility. The bioactive compounds in C. jwarancusa leaf extract served as both reducing and capping agents in the fabrication process of IONPs. Field emission scanning electron microscopy (FE-SEM) revealed rods like surface morphology of IONPs with an average diameter of 50±0.2 nm. Energy-dispersive X-ray spectroscopy (EDS) depicted formation of pure IONPs with 69.84% Fe and 30.16% O2. X-ray diffractometry (XRD) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) validate the crystalline structure, chemical analysis detect the presence of various biomolecular fingerprints in the as synthesized IONPs. UV-visible absorption spectroscopy depicts activity of IONPs under visible light. Thermo-gravimetric analysis (TGA) displayed thermal loss of organic capping around 500°C and confirmed their stabilization. The biosynthesized IONPs revealed promising results in callus induction, shoot regeneration and root induction of chickpea plants. Both chickpea varieties Punjab-Noor 09 and Bittle-98 explants, Embryo axes (EA) and Embryo axes plus adjacent part of cotyledon (EXC) demonstrated dose-dependent response. Among all explants, EXC of Punjab-Noor variety showed the highest callogenesis (96%) and shoot regeneration frequency (88%), while root induction frequency was also increased to 83%. Iron content was quantified in regenerated chickpea varieties through inductively coupled plasma-optical emission spectrometry. The quantity of iron is significantly increased in Punjab-Noor regenerated plants (4.88 mg/g) as compare to control treated plants (2.42 mg/g). We found that IONPs enhance chickpea growth pattern and keep regenerated plantlets infection free by providing an optimum environment for rapid growth and development. Thus, IONPs synthesized through green process can be utilized in tissue culture studies in other important recalcitrant legumes crops.

摘要

这项研究首次报道了生物合成的氧化铁纳米粒子(IONPs)可介导经济上重要的顽拗性鹰嘴豆作物(Cicer arietinum L.)的体外愈伤组织诱导和芽再生。在这里,我们使用香茅草(Cymbopogon jwarancusa)的叶提取物来合成 IONPs,以实现更好的生物相容性。香茅草叶提取物中的生物活性化合物在 IONPs 的制造过程中既起到了还原剂的作用,也起到了稳定剂的作用。场发射扫描电子显微镜(FE-SEM)显示 IONPs 具有棒状表面形态,平均直径为 50±0.2nm。能量色散 X 射线能谱(EDS)描绘了纯 IONPs 的形成,其中 Fe 占 69.84%,O2 占 30.16%。X 射线衍射(XRD)和衰减全反射-傅里叶变换红外(ATR-FTIR)验证了晶体结构,化学分析检测到合成的 IONPs 中存在各种生物分子指纹。紫外可见吸收光谱显示 IONPs 在可见光下的活性。热重分析(TGA)显示 500°C 左右有机稳定剂的热损失,证实了它们的稳定性。生物合成的 IONPs 对鹰嘴豆植物的愈伤组织诱导、芽再生和根诱导表现出了有希望的结果。Punjab-Noor 09 和 Bittle-98 两个鹰嘴豆品种的外植体,胚轴(EA)和胚轴加邻近子叶部分(EXC)都表现出了剂量依赖性的反应。在所有外植体中,Punjab-Noor 品种的 EXC 表现出最高的愈伤组织发生(96%)和芽再生频率(88%),同时根诱导频率也增加到 83%。通过电感耦合等离子体-光发射光谱法对再生鹰嘴豆品种进行了铁含量的定量分析。与对照处理的植物(2.42mg/g)相比,Punjab-Noor 再生植株中的铁含量显著增加(4.88mg/g)。我们发现,IONPs 通过为快速生长和发育提供最佳环境,增强了鹰嘴豆的生长模式,并使再生植物保持无感染状态。因此,通过绿色工艺合成的 IONPs 可用于其他重要顽拗性豆科作物的组织培养研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/877ae5892721/pone.0242829.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/f3b3387ab849/pone.0242829.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/51bc1d742c1f/pone.0242829.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/c6956fe28e1d/pone.0242829.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/142bf8c2f904/pone.0242829.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/4b5511542786/pone.0242829.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/46ad337604a3/pone.0242829.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/877ae5892721/pone.0242829.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/f3b3387ab849/pone.0242829.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/51bc1d742c1f/pone.0242829.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/c6956fe28e1d/pone.0242829.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/142bf8c2f904/pone.0242829.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/4b5511542786/pone.0242829.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/46ad337604a3/pone.0242829.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a9/7707474/877ae5892721/pone.0242829.g007.jpg

相似文献

[1]
Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L.

PLoS One. 2020

[2]
Rice seeds biofortification using biogenic ıron oxide nanoparticles synthesized by using Glycyrrhiza glabra: a study on growth and yield ımprovement.

Sci Rep. 2024-5-29

[3]
Green fabricated zinc oxide nanoformulated media enhanced callus induction and regeneration dynamics of Panicum virgatum L.

PLoS One. 2020-7-9

[4]
Influence of bio fabricated manganese oxide nanoparticles for effective callogenesis of Moringa oleifera Lam.

Plant Physiol Biochem. 2023-5

[5]
Phyto-interactive impact of green synthesized iron oxide nanoparticles and Rhizobium pusense on morpho-physiological and yield components of greengram.

Plant Physiol Biochem. 2023-1

[6]
Potential mechanism of gallic acid-coated iron oxide nanoparticles against associated genes of Klebsiella pneumoniae capsule, antibacterial and antibiofilm.

Microsc Res Tech. 2024-11

[7]
Sustainable synthesis of microwave-assisted IONPs using Spinacia oleracea L. for control of fungal wilt by modulating the defense system in tomato plants.

J Nanobiotechnology. 2022-1-4

[8]
Leishmanicidal Activity of Biogenic Fe₃O₄ Nanoparticles.

Sci Pharm. 2017-11-20

[9]
Optimizing regeneration condition in chickpea (Cicer arietinum L.).

Pak J Biol Sci. 2008-4-1

[10]
In-vivo anticoccidial efficacy of green synthesized iron-oxide nanoparticles using Ficus racemosa Linn leaf extract. (Moraceae) against Emeria tenella infection in broiler chicks.

Vet Parasitol. 2023-9

引用本文的文献

[1]
Effective substitution of ferrous sulfate with iron oxide nanoparticles enhances growth, antioxidant activity, and stevioside accumulation in micro-propagated rebaudiana.

Front Plant Sci. 2025-4-25

[2]
Expression of mastitis causing fibrinogen binding protein of gram positive bacteria in genetically engineered switchgrass and antibodies production in mice.

Physiol Mol Biol Plants. 2024-11

[3]
Green synthesized iron oxide nanoparticles as a potential regulator of callus growth, plant physiology, antioxidative and microbial contamination in Oryza sativa L.

BMC Plant Biol. 2024-10-9

[4]
Nano-Integrated Plant Tissue Culture to Increase the Rate of Callus Induction, Growth, and Curcuminoid Production in .

Plants (Basel). 2024-7-2

[5]
Nanoparticle-mediated enhancement of plant cryopreservation: Cultivar-specific insights into morphogenesis and biochemical responses in Lamprocapnos spectabilis (L.) Fukuhara 'Gold Heart' and 'Valentine'.

PLoS One. 2024

[6]
Boosting Solanum tuberosum resistance to Alternaria solani through green synthesized ferric oxide (FeO) nanoparticles.

Sci Rep. 2024-1-29

[7]
Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering.

Plants (Basel). 2023-8-30

[8]
Bifunctional role of some biogenic nanoparticles in controlling wilt disease and promoting growth of common bean.

AMB Express. 2023-4-29

[9]
Biogenic Synthesis of Copper-Based Nanomaterials Using Plant Extracts and Their Applications: Current and Future Directions.

Nanomaterials (Basel). 2022-9-23

[10]
Biosynthesis and characterization of iron oxide nanoparticles from and screening its combating potential against .

Front Plant Sci. 2022-9-26

本文引用的文献

[1]
Hematite iron oxide nanoparticles: apoptosis of myoblast cancer cells and their arithmetical assessment.

RSC Adv. 2018-7-9

[2]
Enhanced legume root growth with pre-soaking in α-FeO nanoparticle fertilizer.

RSC Adv. 2018-7-2

[3]
Green fabricated zinc oxide nanoformulated media enhanced callus induction and regeneration dynamics of Panicum virgatum L.

PLoS One. 2020-7-9

[4]
Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.).

Ecotoxicol Environ Saf. 2020-3-4

[5]
Green Synthesis of Zeolite/FeO Nanocomposites: Toxicity & Cell Proliferation Assays and Application as a Smart Iron Nanofertilizer.

Int J Nanomedicine. 2020-2-13

[6]
A comprehensive study of the hormetic influence of biosynthesized AgNPs on regenerating rice calli of indica cv. IR64.

Sci Rep. 2019-6-19

[7]
Robust Genetic Transformation System to Obtain Non-chimeric Transgenic Chickpea.

Front Plant Sci. 2019-4-26

[8]
Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study.

Sci Rep. 2019-5-9

[9]
Scavenging of reactive oxygen and nitrogen species with nanomaterials.

Nano Res. 2018-10

[10]
Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii.

Nanoscale Res Lett. 2018-5-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索