Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea.
Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, Republic of Korea.
PLoS One. 2020 Dec 1;15(12):e0243085. doi: 10.1371/journal.pone.0243085. eCollection 2020.
The soybean is agro-economically the most important among all cultivated legume crops, and its seed color is considered one of the most attractive factors in the selection-by-breeders. Thus, genome-wide identification of genes and loci associated with seed colors is critical for the precision breeding of crop soybeans. To dissect seed pigmentation-associated genomic loci and genes, we employed dual approaches by combining reference-based genome-wide association study (rbGWAS) and k-mer-based reference-free GWAS (rfGWAS) with 438 Glycine accessions. The dual analytical strategy allowed us to identify four major genomic loci (designated as SP1-SP4 in this study) associated with the seed colors of soybeans. The k-mer analysis enabled us to find an important recombination event that occurred between subtilisin and I-cluster B in the soybean genome, which could describe a special structural feature of ii allele within the I locus (SP3). Importantly, mapping analyses of both mRNAs and small RNAs allowed us to reveal that the subtilisin-CHS1/CHS3 chimeric transcripts generate and act as an initiator towards 'mirtron (i.e., intron-harboring miRNA precursor)'-triggered silencing of chalcone synthase (CHS) genes. Consequently, the results led us to propose a working model of 'mirtron-triggered gene silencing (MTGS)' to elucidate a long-standing puzzle in the genome-wide CHS gene silencing mechanism. In summary, our study reports four major genomic loci, lists of key genes and genome-wide variations that are associated with seed pigmentation in soybeans. In addition, we propose that the MTGS mechanism plays a crucial role in the genome-wide silencing of CHS genes, thereby suggesting a clue to currently predominant soybean cultivars with the yellow seed coat. Finally, this study will provide a broad insight into the interactions and correlations among seed color-associated genes and loci within the context of anthocyanin biosynthetic pathways.
大豆是所有栽培豆类作物中最重要的农业经济作物,其种子颜色被认为是育种者选择的最具吸引力的因素之一。因此,对与种子颜色相关的基因和基因座进行全基因组鉴定对于作物大豆的精准育种至关重要。为了解析与种子色素相关的基因组基因座和基因,我们采用了基于参考的全基因组关联研究 (rbGWAS) 和基于 k-mer 的无参考 GWAS (rfGWAS) 相结合的双重分析策略,共使用了 438 份 Glycine 材料。这种双重分析策略使我们能够鉴定出与大豆种子颜色相关的四个主要基因组基因座(在本研究中分别命名为 SP1-SP4)。k-mer 分析使我们能够发现大豆基因组中位于 subtilisin 和 I-cluster B 之间的一个重要重组事件,该事件可以描述 I 基因座内 ii 等位基因的特殊结构特征(SP3)。重要的是,mRNA 和小 RNA 的作图分析使我们能够揭示出 subtilisin-CHS1/CHS3 嵌合转录本的作用,它们作为启动子引发“mirotron(即内含子携带 miRNA 前体)”触发的查尔酮合酶 (CHS) 基因沉默。因此,结果使我们提出了“mirotron 触发基因沉默 (MTGS)”的工作模型,以阐明 CHS 基因全基因组沉默机制中的一个长期存在的难题。总之,我们的研究报告了四个主要的基因组基因座、与大豆种子颜色相关的关键基因和全基因组变异列表。此外,我们提出 MTGS 机制在 CHS 基因的全基因组沉默中起着至关重要的作用,从而为目前主要的黄色种皮大豆品种提供了线索。最后,这项研究将为花青素生物合成途径中与种子颜色相关的基因和基因座之间的相互作用和相关性提供广泛的见解。