Suppr超能文献

用于神经元回路体内深部脑成像的荧光显微内镜检查。

Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits.

作者信息

Laing Brenton T, Siemian Justin N, Sarsfield Sarah, Aponte Yeka

机构信息

Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA.

Neuronal Circuits and Behavior Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224-6823, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

出版信息

J Neurosci Methods. 2021 Jan 15;348:109015. doi: 10.1016/j.jneumeth.2020.109015. Epub 2020 Nov 28.

Abstract

Imaging neuronal activity in awake, behaving animals has become a groundbreaking method in neuroscience that has rapidly enhanced our understanding of how the brain works. In vivo microendoscopic imaging has enabled researchers to see inside the brains of experimental animals and thus has emerged as a technology fit to answer many experimental questions. By combining microendoscopy with cutting edge targeting strategies and sophisticated analysis tools, neuronal activity patterns that underlie changes in behavior and physiology can be identified. However, new users may find it challenging to understand the techniques and to leverage this technology to best suit their needs. Here we present a background and overview of the necessary components for performing in vivo optical calcium imaging and offer some detailed guidance for current recommended approaches.

摘要

对清醒的行为动物的神经元活动进行成像已成为神经科学中的一种开创性方法,迅速增进了我们对大脑工作方式的理解。体内显微内窥镜成像使研究人员能够观察实验动物的大脑内部,因此已成为一种适合回答许多实验问题的技术。通过将显微内窥镜与前沿的靶向策略和复杂的分析工具相结合,可以识别行为和生理变化背后的神经元活动模式。然而,新用户可能会发现理解这些技术并利用该技术以最适合他们的需求具有挑战性。在这里,我们介绍了进行体内光学钙成像所需组件的背景和概述,并为当前推荐的方法提供了一些详细指导。

相似文献

1
Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits.
J Neurosci Methods. 2021 Jan 15;348:109015. doi: 10.1016/j.jneumeth.2020.109015. Epub 2020 Nov 28.
2
An aspherical microlens assembly for deep brain fluorescence microendoscopy.
Biochem Biophys Res Commun. 2020 Jun 25;527(2):447-452. doi: 10.1016/j.bbrc.2020.04.009. Epub 2020 Apr 23.
6
Probing Deep Brain Circuitry: New Advances in in Vivo Calcium Measurement Strategies.
ACS Chem Neurosci. 2017 Feb 15;8(2):243-251. doi: 10.1021/acschemneuro.6b00307. Epub 2017 Feb 2.
7
Miniscope GRIN Lens System for Calcium Imaging of Neuronal Activity from Deep Brain Structures in Behaving Animals.
Curr Protoc Neurosci. 2019 Jan;86(1):e56. doi: 10.1002/cpns.56. Epub 2018 Oct 13.
8
In vivo optical microendoscopy for imaging cells lying deep within live tissue.
Cold Spring Harb Protoc. 2012 Oct 1;2012(10):1029-34. doi: 10.1101/pdb.top071464.
9
Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque.
Cell Rep. 2021 Jun 15;35(11):109239. doi: 10.1016/j.celrep.2021.109239.
10
In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy.
J Neurophysiol. 2004 Nov;92(5):3121-33. doi: 10.1152/jn.00234.2004. Epub 2004 May 5.

引用本文的文献

1
The State of High-Resolution Imaging of the Human Inner Ear: A Look Into the Black Box.
Adv Sci (Weinh). 2025 Jul;12(28):e00556. doi: 10.1002/advs.202500556. Epub 2025 Jun 5.
3
Imagining the future of optical microscopy: everything, everywhere, all at once.
Commun Biol. 2023 Oct 28;6(1):1096. doi: 10.1038/s42003-023-05468-9.
4
Using deep learning to study emotional behavior in rodent models.
Front Behav Neurosci. 2022 Nov 22;16:1044492. doi: 10.3389/fnbeh.2022.1044492. eCollection 2022.
5
The Heart's Pacemaker Mimics Brain Cytoarchitecture and Function: Novel Interstitial Cells Expose Complexity of the SAN.
JACC Clin Electrophysiol. 2022 Oct;8(10):1191-1215. doi: 10.1016/j.jacep.2022.07.003. Epub 2022 Sep 28.
6
Anatomical Methods to Study the Suprachiasmatic Nucleus.
Methods Mol Biol. 2022;2482:191-210. doi: 10.1007/978-1-0716-2249-0_13.
7
8
Circuit Investigation of Social Interaction and Substance Use Disorder Using Miniscopes.
Front Neural Circuits. 2021 Oct 5;15:762441. doi: 10.3389/fncir.2021.762441. eCollection 2021.

本文引用的文献

3
Inhibition of impulsive action by projection-defined prefrontal pyramidal neurons.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17278-17287. doi: 10.1073/pnas.2000523117. Epub 2020 Jul 6.
4
Heterogeneous Habenular Neuronal Ensembles during Selection of Defensive Behaviors.
Cell Rep. 2020 Jun 9;31(10):107752. doi: 10.1016/j.celrep.2020.107752.
5
EZcalcium: Open-Source Toolbox for Analysis of Calcium Imaging Data.
Front Neural Circuits. 2020 May 15;14:25. doi: 10.3389/fncir.2020.00025. eCollection 2020.
6
General anesthetics activate a potent central pain-suppression circuit in the amygdala.
Nat Neurosci. 2020 Jul;23(7):854-868. doi: 10.1038/s41593-020-0632-8. Epub 2020 May 18.
7
Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation.
Prog Neurobiol. 2020 Apr;187:101771. doi: 10.1016/j.pneurobio.2020.101771. Epub 2020 Feb 11.
8
Opposing Regulation of Cocaine Seeking by Glutamate and GABA Neurons in the Ventral Pallidum.
Cell Rep. 2020 Feb 11;30(6):2018-2027.e3. doi: 10.1016/j.celrep.2020.01.023.
9
NINscope, a versatile miniscope for multi-region circuit investigations.
Elife. 2020 Jan 14;9:e49987. doi: 10.7554/eLife.49987.
10
A cortical-brainstem circuit predicts and governs compulsive alcohol drinking.
Science. 2019 Nov 22;366(6468):1008-1012. doi: 10.1126/science.aay1186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验