Suppr超能文献

用于对活体组织深处细胞进行成像的体内光学显微内窥镜检查。

In vivo optical microendoscopy for imaging cells lying deep within live tissue.

作者信息

Barretto Robert P J, Schnitzer Mark J

出版信息

Cold Spring Harb Protoc. 2012 Oct 1;2012(10):1029-34. doi: 10.1101/pdb.top071464.

Abstract

Although in vivo microscopy has been pivotal in enabling studies of neuronal structure and function in the intact mammalian brain, conventional intravital microscopy has generally been limited to superficial brain areas such as the olfactory bulb, the neocortex, or the cerebellar cortex. For imaging cells in deeper areas, this article discusses in vivo optical microendoscopy using gradient refractive index (GRIN) microlenses that can be inserted into tissue. Our general methodology is broadly applicable to many deep brain regions and areas of the body. Microendoscopes are available in a wide variety of optical designs, allowing imaging across a range of spatial scales and with spatial resolution that can now closely approach that offered by standard water-immersion microscope objectives. The incorporation of microendoscope probes into portable miniaturized microscopes allows imaging in freely behaving animals. When combined with the broad sets of available fluorescent markers, animal preparations, and genetically modified mice, microendoscopic methods enable sophisticated experimental designs for probing how cellular characteristics may underlie or reflect animal behavior and life experience, in healthy animals and animal models of disease.

摘要

尽管体内显微镜检查对于研究完整哺乳动物大脑中的神经元结构和功能至关重要,但传统的活体显微镜检查通常仅限于诸如嗅球、新皮层或小脑皮层等浅表脑区。为了对更深区域的细胞进行成像,本文讨论了使用可插入组织的梯度折射率(GRIN)微透镜的体内光学显微内镜检查。我们的一般方法广泛适用于许多深部脑区和身体部位。显微内镜有多种光学设计可供选择,能够在一系列空间尺度上进行成像,其空间分辨率现已可与标准水浸显微镜物镜的分辨率相近。将显微内镜探头集成到便携式小型显微镜中,可在自由活动的动物体内进行成像。当与大量可用的荧光标记、动物制剂和基因工程小鼠相结合时,显微内镜方法能够实现复杂的实验设计,以探究细胞特征如何在健康动物和疾病动物模型中构成或反映动物行为和生活经历的基础。

相似文献

2
In vivo microendoscopy of the hippocampus.海马体的体内显微内窥镜检查。
Cold Spring Harb Protoc. 2012 Oct 1;2012(10):1092-9. doi: 10.1101/pdb.prot071472.
4
An aspherical microlens assembly for deep brain fluorescence microendoscopy.用于深部脑荧光显微内镜的非球面微透镜组件。
Biochem Biophys Res Commun. 2020 Jun 25;527(2):447-452. doi: 10.1016/j.bbrc.2020.04.009. Epub 2020 Apr 23.
6
Fibre-optic nonlinear optical microscopy and endoscopy.光纤非线性光学显微镜与内窥镜检查
J Microsc. 2007 Jun;226(Pt 3):195-206. doi: 10.1111/j.1365-2818.2007.01777.x.
8
Fiber optic in vivo imaging in the mammalian nervous system.哺乳动物神经系统中的光纤活体成像。
Curr Opin Neurobiol. 2004 Oct;14(5):617-28. doi: 10.1016/j.conb.2004.08.017.
9
Online analysis of microendoscopic 1-photon calcium imaging data streams.微内窥镜单光子钙成像数据流的在线分析。
PLoS Comput Biol. 2021 Jan 28;17(1):e1008565. doi: 10.1371/journal.pcbi.1008565. eCollection 2021 Jan.

引用本文的文献

2
Repeated imaging through a multimode optical fiber using adaptive optics.使用自适应光学技术通过多模光纤进行重复成像。
Biomed Opt Express. 2022 Jan 10;13(2):662-675. doi: 10.1364/BOE.448277. eCollection 2022 Feb 1.
4
3D Whole-Brain Imaging Approaches to Study Brain Tumors.用于研究脑肿瘤的3D全脑成像方法
Cancers (Basel). 2021 Apr 15;13(8):1897. doi: 10.3390/cancers13081897.

本文引用的文献

1
In vivo microendoscopy of the hippocampus.海马体的体内显微内窥镜检查。
Cold Spring Harb Protoc. 2012 Oct 1;2012(10):1092-9. doi: 10.1101/pdb.prot071472.
5
Advances in light microscopy for neuroscience.神经科学光学显微镜技术的进展。
Annu Rev Neurosci. 2009;32:435-506. doi: 10.1146/annurev.neuro.051508.135540.
7
Motor behavior activates Bergmann glial networks.运动行为激活伯格曼胶质细胞网络。
Neuron. 2009 May 14;62(3):400-12. doi: 10.1016/j.neuron.2009.03.019.
9
Calcium imaging in the living brain: prospects for molecular medicine.活体大脑中的钙成像:分子医学的前景。
Trends Mol Med. 2008 Sep;14(9):389-99. doi: 10.1016/j.molmed.2008.07.005. Epub 2008 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验