Barretto Robert P J, Schnitzer Mark J
Cold Spring Harb Protoc. 2012 Oct 1;2012(10):1029-34. doi: 10.1101/pdb.top071464.
Although in vivo microscopy has been pivotal in enabling studies of neuronal structure and function in the intact mammalian brain, conventional intravital microscopy has generally been limited to superficial brain areas such as the olfactory bulb, the neocortex, or the cerebellar cortex. For imaging cells in deeper areas, this article discusses in vivo optical microendoscopy using gradient refractive index (GRIN) microlenses that can be inserted into tissue. Our general methodology is broadly applicable to many deep brain regions and areas of the body. Microendoscopes are available in a wide variety of optical designs, allowing imaging across a range of spatial scales and with spatial resolution that can now closely approach that offered by standard water-immersion microscope objectives. The incorporation of microendoscope probes into portable miniaturized microscopes allows imaging in freely behaving animals. When combined with the broad sets of available fluorescent markers, animal preparations, and genetically modified mice, microendoscopic methods enable sophisticated experimental designs for probing how cellular characteristics may underlie or reflect animal behavior and life experience, in healthy animals and animal models of disease.
尽管体内显微镜检查对于研究完整哺乳动物大脑中的神经元结构和功能至关重要,但传统的活体显微镜检查通常仅限于诸如嗅球、新皮层或小脑皮层等浅表脑区。为了对更深区域的细胞进行成像,本文讨论了使用可插入组织的梯度折射率(GRIN)微透镜的体内光学显微内镜检查。我们的一般方法广泛适用于许多深部脑区和身体部位。显微内镜有多种光学设计可供选择,能够在一系列空间尺度上进行成像,其空间分辨率现已可与标准水浸显微镜物镜的分辨率相近。将显微内镜探头集成到便携式小型显微镜中,可在自由活动的动物体内进行成像。当与大量可用的荧光标记、动物制剂和基因工程小鼠相结合时,显微内镜方法能够实现复杂的实验设计,以探究细胞特征如何在健康动物和疾病动物模型中构成或反映动物行为和生活经历的基础。