Jung Juergen C, Mehta Amit D, Aksay Emre, Stepnoski Raymond, Schnitzer Mark J
Department of Biological Sciences, Stanford University, Stanford, CA 94305-5435, USA.
J Neurophysiol. 2004 Nov;92(5):3121-33. doi: 10.1152/jn.00234.2004. Epub 2004 May 5.
One of the major limitations in the current set of techniques available to neuroscientists is a dearth of methods for imaging individual cells deep within the brains of live animals. To overcome this limitation, we developed two forms of minimally invasive fluorescence microendoscopy and tested their abilities to image cells in vivo. Both one- and two-photon fluorescence microendoscopy are based on compound gradient refractive index (GRIN) lenses that are 350-1,000 microm in diameter and provide micron-scale resolution. One-photon microendoscopy allows full-frame images to be viewed by eye or with a camera, and is well suited to fast frame-rate imaging. Two-photon microendoscopy is a laser-scanning modality that provides optical sectioning deep within tissue. Using in vivo microendoscopy we acquired video-rate movies of thalamic and CA1 hippocampal red blood cell dynamics and still-frame images of CA1 neurons and dendrites in anesthetized rats and mice. Microendoscopy will help meet the growing demand for in vivo cellular imaging created by the rapid emergence of new synthetic and genetically encoded fluorophores that can be used to label specific brain areas or cell classes.
神经科学家目前可用的一系列技术中的一个主要限制是缺乏对活体动物大脑深处单个细胞进行成像的方法。为了克服这一限制,我们开发了两种形式的微创荧光显微内窥镜,并测试了它们在体内对细胞成像的能力。单光子和双光子荧光显微内窥镜均基于直径为350 - 1000微米的复合梯度折射率(GRIN)透镜,并提供微米级分辨率。单光子显微内窥镜允许通过肉眼或相机查看全帧图像,非常适合快速帧率成像。双光子显微内窥镜是一种激光扫描方式,可在组织深处提供光学切片。使用体内显微内窥镜,我们获取了麻醉大鼠和小鼠丘脑和CA1海马区红细胞动态的视频速率电影以及CA1神经元和树突的静止帧图像。显微内窥镜将有助于满足对体内细胞成像日益增长的需求,这种需求是由新的合成和基因编码荧光团的迅速出现所产生的,这些荧光团可用于标记特定的脑区或细胞类型。