Suppr超能文献

使用单光子和双光子荧光显微内镜对活体哺乳动物大脑进行成像。

In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy.

作者信息

Jung Juergen C, Mehta Amit D, Aksay Emre, Stepnoski Raymond, Schnitzer Mark J

机构信息

Department of Biological Sciences, Stanford University, Stanford, CA 94305-5435, USA.

出版信息

J Neurophysiol. 2004 Nov;92(5):3121-33. doi: 10.1152/jn.00234.2004. Epub 2004 May 5.

Abstract

One of the major limitations in the current set of techniques available to neuroscientists is a dearth of methods for imaging individual cells deep within the brains of live animals. To overcome this limitation, we developed two forms of minimally invasive fluorescence microendoscopy and tested their abilities to image cells in vivo. Both one- and two-photon fluorescence microendoscopy are based on compound gradient refractive index (GRIN) lenses that are 350-1,000 microm in diameter and provide micron-scale resolution. One-photon microendoscopy allows full-frame images to be viewed by eye or with a camera, and is well suited to fast frame-rate imaging. Two-photon microendoscopy is a laser-scanning modality that provides optical sectioning deep within tissue. Using in vivo microendoscopy we acquired video-rate movies of thalamic and CA1 hippocampal red blood cell dynamics and still-frame images of CA1 neurons and dendrites in anesthetized rats and mice. Microendoscopy will help meet the growing demand for in vivo cellular imaging created by the rapid emergence of new synthetic and genetically encoded fluorophores that can be used to label specific brain areas or cell classes.

摘要

神经科学家目前可用的一系列技术中的一个主要限制是缺乏对活体动物大脑深处单个细胞进行成像的方法。为了克服这一限制,我们开发了两种形式的微创荧光显微内窥镜,并测试了它们在体内对细胞成像的能力。单光子和双光子荧光显微内窥镜均基于直径为350 - 1000微米的复合梯度折射率(GRIN)透镜,并提供微米级分辨率。单光子显微内窥镜允许通过肉眼或相机查看全帧图像,非常适合快速帧率成像。双光子显微内窥镜是一种激光扫描方式,可在组织深处提供光学切片。使用体内显微内窥镜,我们获取了麻醉大鼠和小鼠丘脑和CA1海马区红细胞动态的视频速率电影以及CA1神经元和树突的静止帧图像。显微内窥镜将有助于满足对体内细胞成像日益增长的需求,这种需求是由新的合成和基因编码荧光团的迅速出现所产生的,这些荧光团可用于标记特定的脑区或细胞类型。

相似文献

1
In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy.
J Neurophysiol. 2004 Nov;92(5):3121-33. doi: 10.1152/jn.00234.2004. Epub 2004 May 5.
2
In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy.
Otol Neurotol. 2006 Feb;27(2):144-52. doi: 10.1097/01.mao.0000190708.44067.b0.
3
An aspherical microlens assembly for deep brain fluorescence microendoscopy.
Biochem Biophys Res Commun. 2020 Jun 25;527(2):447-452. doi: 10.1016/j.bbrc.2020.04.009. Epub 2020 Apr 23.
4
Fibre-optical microendoscopy.
J Microsc. 2014 Apr;254(1):13-18. doi: 10.1111/jmi.12119. Epub 2014 Mar 5.
6
Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy.
J Neurosci Methods. 1994 Oct;54(2):151-62. doi: 10.1016/0165-0270(94)90189-9.
7
Video-rate scanning confocal microscopy and microendoscopy.
J Vis Exp. 2011 Oct 20(56):3252. doi: 10.3791/3252.
8
Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain.
Biomed Opt Express. 2015 Oct 23;6(11):4546-56. doi: 10.1364/BOE.6.004546. eCollection 2015 Nov 1.
9
In vivo optical microendoscopy for imaging cells lying deep within live tissue.
Cold Spring Harb Protoc. 2012 Oct 1;2012(10):1029-34. doi: 10.1101/pdb.top071464.
10
Fast varifocal two-photon microendoscope for imaging neuronal activity in the deep brain.
Biomed Opt Express. 2017 Aug 10;8(9):4049-4060. doi: 10.1364/BOE.8.004049. eCollection 2017 Sep 1.

引用本文的文献

1
Deep-tissue two-photon brain imaging enabled by a tunable fiber-optic dispersive wave generator.
Sci Rep. 2025 Jul 8;15(1):24404. doi: 10.1038/s41598-025-08704-w.
2
Intermingled representation of oral cavity in mouse trigeminal ganglion.
Sci Rep. 2025 Jul 1;15(1):22007. doi: 10.1038/s41598-025-05382-6.
3
The State of High-Resolution Imaging of the Human Inner Ear: A Look Into the Black Box.
Adv Sci (Weinh). 2025 Jul;12(28):e00556. doi: 10.1002/advs.202500556. Epub 2025 Jun 5.
5
Protocol for in vivo recording of neural activity in deep structures of mice brain via gradient lenses by calcium imaging.
STAR Protoc. 2025 Mar 21;6(1):103534. doi: 10.1016/j.xpro.2024.103534. Epub 2024 Dec 20.
6
Imaging high-frequency voltage dynamics in multiple neuron classes of behaving mammals.
bioRxiv. 2024 Aug 16:2024.08.15.607428. doi: 10.1101/2024.08.15.607428.
7
Speckle-enabled in vivo demixing of neural activity in the mouse brain.
Biomed Opt Express. 2024 May 3;15(6):3586-3608. doi: 10.1364/BOE.524521. eCollection 2024 Jun 1.
8
Large-scale deep tissue voltage imaging with targeted-illumination confocal microscopy.
Nat Methods. 2024 Jun;21(6):1094-1102. doi: 10.1038/s41592-024-02275-w. Epub 2024 Jun 5.
10
A Semi-supervised Pipeline for Accurate Neuron Segmentation with Fewer Ground Truth Labels.
eNeuro. 2024 Feb 15;11(2). doi: 10.1523/ENEURO.0352-23.2024. Print 2024 Feb.

本文引用的文献

1
Micromachined scanning confocal optical microscope.
Opt Lett. 1996 May 15;21(10):764-6. doi: 10.1364/ol.21.000764.
2
Slit-scanning confocal microendoscope for high-resolution in vivo imaging.
Appl Opt. 1999 Dec 1;38(34):7133-44. doi: 10.1364/ao.38.007133.
4
Multispectral imaging with a confocal microendoscope.
Opt Lett. 2000 Dec 1;25(23):1708-10. doi: 10.1364/ol.25.001708.
7
High-resolution in vivo imaging of hippocampal dendrites and spines.
J Neurosci. 2004 Mar 31;24(13):3147-51. doi: 10.1523/JNEUROSCI.5218-03.2004.
8
In vivo multiphoton microscopy of deep brain tissue.
J Neurophysiol. 2004 Apr;91(4):1908-12. doi: 10.1152/jn.01007.2003. Epub 2003 Dec 10.
10
Supralinear Ca2+ influx into dendritic tufts of layer 2/3 neocortical pyramidal neurons in vitro and in vivo.
J Neurosci. 2003 Sep 17;23(24):8558-67. doi: 10.1523/JNEUROSCI.23-24-08558.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验