Suppr超能文献

人类内耳的高分辨率成像现状:窥探黑匣子

The State of High-Resolution Imaging of the Human Inner Ear: A Look Into the Black Box.

作者信息

Batts Shelley, Pham Nancy, Tearney Guillermo, Stankovic Konstantina M

机构信息

Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, 801 Welch Rd, Stanford, CA, 94304, USA.

Department of Radiology, Stanford University School of Medicine, 1201 Welch Rd, Stanford, CA, 94304, USA.

出版信息

Adv Sci (Weinh). 2025 Jul;12(28):e00556. doi: 10.1002/advs.202500556. Epub 2025 Jun 5.

Abstract

Unlike most medical fields, otology has not benefited from the transformative impact of high-resolution, cellular-level imaging. The sensorineural cells required for human hearing-located within the cochlea-are just 10-50 µm, placing them outside the resolution of magnetic resonance imaging, computed tomography, and positron emission tomography. These cells are highly mechano- and chemo-sensitive, and their death or dysfunction underlie the vast majority of hearing loss. Further, the cochlea is only 4-7 mm in diameter, has complex anatomy, and is deeply embedded in bone. Cochlear blood flow is partially separated by a blood barrier, limiting access to radiotracers or fluorophores. These and other features have left the human cochlea as a "black box" that cannot be assessed with high precision in vivo, limiting the development of novel hearing loss therapies. The benefits and drawbacks of existing medical imaging techniques used to diagnose disorders of the human inner ear are discussed, as well as those of emerging technologies that may help overcome challenges to access, resolution, and functional detail. A comprehensive and up-to-date discussion is provided on research efforts to improve and adapt current clinical imaging methods and introduce recent innovations that have shown exciting promise for deriving both structural and metabolic information from cochlear cells.

摘要

与大多数医学领域不同,耳科学尚未从高分辨率细胞水平成像的变革性影响中受益。人类听力所需的感觉神经细胞位于耳蜗内,仅10 - 50微米,超出了磁共振成像、计算机断层扫描和正电子发射断层扫描的分辨率范围。这些细胞对机械和化学高度敏感,它们的死亡或功能障碍是绝大多数听力损失的根本原因。此外,耳蜗直径仅4 - 7毫米,解剖结构复杂,且深深嵌入骨中。耳蜗血流部分被血脑屏障分隔,限制了放射性示踪剂或荧光团的进入。这些以及其他特征使得人类耳蜗成为一个无法在体内进行高精度评估的“黑匣子”,限制了新型听力损失治疗方法的发展。本文讨论了用于诊断人类内耳疾病的现有医学成像技术的优缺点,以及可能有助于克服获取、分辨率和功能细节挑战的新兴技术的优缺点。还提供了关于改进和调整当前临床成像方法的研究工作的全面且最新的讨论,并介绍了最近的创新成果,这些创新成果在从耳蜗细胞获取结构和代谢信息方面显示出令人兴奋的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed5/12302556/3aa19c858107/ADVS-12-e00556-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验