Suppr超能文献

无扫描机器学习功能的非相干显微镜用于微创大脑深部成像。

Scan-less machine-learning-enabled incoherent microscopy for minimally-invasive deep-brain imaging.

出版信息

Opt Express. 2022 Jan 17;30(2):1546-1554. doi: 10.1364/OE.446241.

Abstract

Deep-brain microscopy is strongly limited by the size of the imaging probe, both in terms of achievable resolution and potential trauma due to surgery. Here, we show that a segment of an ultra-thin multi-mode fiber (cannula) can replace the bulky microscope objective inside the brain. By creating a self-consistent deep neural network that is trained to reconstruct anthropocentric images from the raw signal transported by the cannula, we demonstrate a single-cell resolution (< 10μm), depth sectioning resolution of 40 μm, and field of view of 200 μm, all with green-fluorescent-protein labelled neurons imaged at depths as large as 1.4 mm from the brain surface. Since ground-truth images at these depths are challenging to obtain in vivo, we propose a novel ensemble method that averages the reconstructed images from disparate deep-neural-network architectures. Finally, we demonstrate dynamic imaging of moving GCaMp-labelled C. elegans worms. Our approach dramatically simplifies deep-brain microscopy.

摘要

深层脑显微镜受到成像探头尺寸的强烈限制,无论是在可实现的分辨率方面,还是在由于手术引起的潜在创伤方面。在这里,我们表明,一段超薄多模光纤(套管)可以替代大脑内部庞大的显微镜物镜。通过创建一个自洽的深度神经网络,该网络经过训练可从套管传输的原始信号中重建以人为中心的图像,我们展示了单细胞分辨率(<10μm)、40μm 的深度切片分辨率和 200μm 的视野,所有这些分辨率都可以用绿色荧光蛋白标记的神经元进行成像,这些神经元的深度可达大脑表面 1.4 毫米。由于在这些深度获得真实图像具有挑战性,我们提出了一种新的集合方法,该方法可以对来自不同深度神经网络结构的重建图像进行平均。最后,我们演示了运动 GCaMp 标记的秀丽隐杆线虫的动态成像。我们的方法极大地简化了深层脑显微镜。

相似文献

1
2
3D computational cannula fluorescence microscopy enabled by artificial neural networks.
Opt Express. 2020 Oct 26;28(22):32342-32348. doi: 10.1364/OE.403238.
3
Computational cannula microscopy of neurons using neural networks.
Opt Lett. 2020 Apr 1;45(7):2111-2114. doi: 10.1364/OL.387496.
4
Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy.
Sci Rep. 2017 Mar 20;7:44791. doi: 10.1038/srep44791.
5
Automatically tracking neurons in a moving and deforming brain.
PLoS Comput Biol. 2017 May 18;13(5):e1005517. doi: 10.1371/journal.pcbi.1005517. eCollection 2017 May.
6
MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
Magn Reson Med. 2019 Dec;82(6):2133-2145. doi: 10.1002/mrm.27894. Epub 2019 Aug 2.
7
Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.
Opt Express. 2020 Sep 28;28(20):30234-30247. doi: 10.1364/OE.399542.
8
DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
Neuroimage. 2018 Apr 15;170:434-445. doi: 10.1016/j.neuroimage.2017.02.035. Epub 2017 Feb 20.
10
Intracellular Ca2+ imaging in C. elegans.
Methods Mol Biol. 2006;351:253-64. doi: 10.1385/1-59745-151-7:253.

引用本文的文献

1
Demixing fluorescence time traces transmitted by multimode fibers.
Nat Commun. 2024 Jul 26;15(1):6286. doi: 10.1038/s41467-024-50306-z.

本文引用的文献

1
Memory effect assisted imaging through multimode optical fibres.
Nat Commun. 2021 Jun 18;12(1):3751. doi: 10.1038/s41467-021-23729-1.
2
Needle-based deep-neural-network camera.
Appl Opt. 2021 Apr 1;60(10):B135-B140. doi: 10.1364/AO.415059.
3
High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells.
Proc Natl Acad Sci U S A. 2021 Jan 19;118(3). doi: 10.1073/pnas.2004176118.
4
NeuroPAL: A Multicolor Atlas for Whole-Brain Neuronal Identification in C. elegans.
Cell. 2021 Jan 7;184(1):272-288.e11. doi: 10.1016/j.cell.2020.12.012. Epub 2020 Dec 29.
5
Volumetric two-photon fluorescence imaging of live neurons using a multimode optical fiber.
Opt Lett. 2020 Dec 15;45(24):6599-6602. doi: 10.1364/OL.409464.
6
Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits.
J Neurosci Methods. 2021 Jan 15;348:109015. doi: 10.1016/j.jneumeth.2020.109015. Epub 2020 Nov 28.
7
3D computational cannula fluorescence microscopy enabled by artificial neural networks.
Opt Express. 2020 Oct 26;28(22):32342-32348. doi: 10.1364/OE.403238.
8
Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals.
Front Neurosci. 2020 Aug 11;14:819. doi: 10.3389/fnins.2020.00819. eCollection 2020.
9
Miniature Fluorescence Microscopy for Imaging Brain Activity in Freely-Behaving Animals.
Neurosci Bull. 2020 Oct;36(10):1182-1190. doi: 10.1007/s12264-020-00561-z. Epub 2020 Aug 14.
10
Scanless two-photon excitation with temporal focusing.
Nat Methods. 2020 Jun;17(6):571-581. doi: 10.1038/s41592-020-0795-y. Epub 2020 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验