Opt Express. 2022 Jan 17;30(2):1546-1554. doi: 10.1364/OE.446241.
Deep-brain microscopy is strongly limited by the size of the imaging probe, both in terms of achievable resolution and potential trauma due to surgery. Here, we show that a segment of an ultra-thin multi-mode fiber (cannula) can replace the bulky microscope objective inside the brain. By creating a self-consistent deep neural network that is trained to reconstruct anthropocentric images from the raw signal transported by the cannula, we demonstrate a single-cell resolution (< 10μm), depth sectioning resolution of 40 μm, and field of view of 200 μm, all with green-fluorescent-protein labelled neurons imaged at depths as large as 1.4 mm from the brain surface. Since ground-truth images at these depths are challenging to obtain in vivo, we propose a novel ensemble method that averages the reconstructed images from disparate deep-neural-network architectures. Finally, we demonstrate dynamic imaging of moving GCaMp-labelled C. elegans worms. Our approach dramatically simplifies deep-brain microscopy.
深层脑显微镜受到成像探头尺寸的强烈限制,无论是在可实现的分辨率方面,还是在由于手术引起的潜在创伤方面。在这里,我们表明,一段超薄多模光纤(套管)可以替代大脑内部庞大的显微镜物镜。通过创建一个自洽的深度神经网络,该网络经过训练可从套管传输的原始信号中重建以人为中心的图像,我们展示了单细胞分辨率(<10μm)、40μm 的深度切片分辨率和 200μm 的视野,所有这些分辨率都可以用绿色荧光蛋白标记的神经元进行成像,这些神经元的深度可达大脑表面 1.4 毫米。由于在这些深度获得真实图像具有挑战性,我们提出了一种新的集合方法,该方法可以对来自不同深度神经网络结构的重建图像进行平均。最后,我们演示了运动 GCaMp 标记的秀丽隐杆线虫的动态成像。我们的方法极大地简化了深层脑显微镜。