Suppr超能文献

全切片图像上肿瘤和免疫微环境的单细胞空间分析揭示肝细胞癌亚型

Single-Cell Spatial Analysis of Tumor and Immune Microenvironment on Whole-Slide Image Reveals Hepatocellular Carcinoma Subtypes.

作者信息

Wang Haiyue, Jiang Yuming, Li Bailiang, Cui Yi, Li Dengwang, Li Ruijiang

机构信息

Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Shandong 250358, Jinan, China.

Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA 94304, USA.

出版信息

Cancers (Basel). 2020 Nov 28;12(12):3562. doi: 10.3390/cancers12123562.

Abstract

Hepatocellular carcinoma (HCC) is a heterogeneous disease with diverse characteristics and outcomes. Here, we aim to develop a histological classification for HCC by integrating computational imaging features of the tumor and its microenvironment. We first trained a multitask deep-learning neural network for automated single-cell segmentation and classification on hematoxylin- and eosin-stained tissue sections. After confirming the accuracy in a testing set, we applied the model to whole-slide images of 304 tumors in the Cancer Genome Atlas. Given the single-cell map, we calculated 246 quantitative image features to characterize individual nuclei as well as spatial relations between tumor cells and infiltrating lymphocytes. Unsupervised consensus clustering revealed three reproducible histological subtypes, which exhibit distinct nuclear features as well as spatial distribution and relation between tumor cells and lymphocytes. These histological subtypes were associated with somatic genomic alterations (i.e., aneuploidy) and specific molecular pathways, including cell cycle progression and oxidative phosphorylation. Importantly, these histological subtypes complement established molecular classification and demonstrate independent prognostic value beyond conventional clinicopathologic factors. Our study represents a step forward in quantifying the spatial distribution and complex interaction between tumor and immune microenvironment. The clinical relevance of the imaging subtypes for predicting prognosis and therapy response warrants further validation.

摘要

肝细胞癌(HCC)是一种具有多种特征和转归的异质性疾病。在此,我们旨在通过整合肿瘤及其微环境的计算成像特征来开发一种HCC的组织学分类方法。我们首先训练了一个多任务深度学习神经网络,用于对苏木精-伊红染色的组织切片进行自动单细胞分割和分类。在测试集中确认准确性后,我们将该模型应用于癌症基因组图谱中304个肿瘤的全切片图像。根据单细胞图谱,我们计算了246个定量图像特征,以表征单个细胞核以及肿瘤细胞与浸润淋巴细胞之间的空间关系。无监督一致性聚类揭示了三种可重复的组织学亚型,它们表现出不同的核特征以及肿瘤细胞与淋巴细胞之间的空间分布和关系。这些组织学亚型与体细胞基因组改变(即非整倍体)和特定分子途径相关,包括细胞周期进程和氧化磷酸化。重要的是,这些组织学亚型补充了已有的分子分类,并显示出超越传统临床病理因素的独立预后价值。我们的研究在量化肿瘤与免疫微环境之间的空间分布和复杂相互作用方面向前迈进了一步。成像亚型对预测预后和治疗反应的临床相关性有待进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fc6/7761227/55cfe303a67d/cancers-12-03562-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验