Department of Biochemistry, Stanford University, Stanford, CA 94305.
Department of Structural Biology, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8172-E8180. doi: 10.1073/pnas.1807981115. Epub 2018 Aug 13.
Despite not spanning phospholipid bilayers, monotopic integral proteins (MIPs) play critical roles in organizing biochemical reactions on membrane surfaces. Defining the structural basis by which these proteins are anchored to membranes has been hampered by the paucity of unambiguously identified MIPs and a lack of computational tools that accurately distinguish monolayer-integrating motifs from bilayer-spanning transmembrane domains (TMDs). We used quantitative proteomics and statistical modeling to identify 87 high-confidence candidate MIPs in lipid droplets, including 21 proteins with predicted TMDs that cannot be accommodated in these monolayer-enveloped organelles. Systematic cysteine-scanning mutagenesis showed the predicted TMD of one candidate MIP, DHRS3, to be a partially buried amphipathic α-helix in both lipid droplet monolayers and the cytoplasmic leaflet of endoplasmic reticulum membrane bilayers. Coarse-grained molecular dynamics simulations support these observations, suggesting that this helix is most stable at the solvent-membrane interface. The simulations also predicted similar interfacial amphipathic helices when applied to seven additional MIPs from our dataset. Our findings suggest that interfacial helices may be a common motif by which MIPs are integrated into membranes, and provide high-throughput methods to identify and study MIPs.
尽管非跨膜磷脂双层的单次跨膜蛋白(MIP)在膜表面上组织生化反应中起着关键作用,但确定这些蛋白质锚定在膜上的结构基础一直受到以下两个因素的阻碍:明确鉴定的 MIP 数量稀少,以及缺乏能够准确区分单层整合基序与跨双层跨膜结构域(TMD)的计算工具。我们使用定量蛋白质组学和统计建模在脂滴中鉴定了 87 种高可信度的候选 MIP,其中包括 21 种具有预测 TMD 的蛋白质,这些 TMD 不能容纳在这些单层包裹的细胞器中。系统的半胱氨酸扫描突变显示,一种候选 MIP(DHRS3)的预测 TMD 在脂滴单层和内质网膜双层的细胞质叶中是部分埋藏的两亲性α-螺旋。粗粒度分子动力学模拟支持这些观察结果,表明该螺旋在溶剂-膜界面处最稳定。当应用于我们数据集的另外七个 MIP 时,模拟还预测了类似的界面两亲性螺旋。我们的研究结果表明,界面螺旋可能是 MIP 整合到膜中的常见基序,并提供了识别和研究 MIP 的高通量方法。