Suppr超能文献

病理状态下脂滴的生物合成与分解

Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions.

作者信息

Fader Kaiser Claudio M, Romano Patricia S, Vanrell M Cristina, Pocognoni Cristian A, Jacob Julieta, Caruso Benjamín, Delgui Laura R

机构信息

CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina.

Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina.

出版信息

Front Cell Dev Biol. 2022 Feb 7;9:826248. doi: 10.3389/fcell.2021.826248. eCollection 2021.

Abstract

Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.

摘要

脂滴(LD)长期以来一直被视为单纯的脂肪滴;然而,最近发现脂滴普遍存在、具有动态性,且存在于多种细胞器中,并在其中发挥着广泛的关键功能。尽管对真核生物脂滴的生物发生过程了解并不完全,但它始于内质网(ER)中酶合成中性脂质(NL)。中性脂质的积累导致它们分离成纳米级的核,随着进一步填充中性脂质,这些核在内质网小叶之间生长成透镜状。内质网和透镜状结构的脂质组成及界面张力调节它们的形状,这与特定的内质网蛋白一起,决定了脂滴从内质网向细胞质出芽的倾向。脂滴最重要的功能是能量缓冲。但除此之外,脂滴还积极参与生理过程,如脂质代谢、蛋白质稳态控制、有毒脂质代谢中间体的隔离、应激保护以及肿瘤增殖。此外,脂滴可作为病原体复制和防御的平台。为实现这些功能,从生物发生到分解,真核生物脂滴已发展出在细胞质中移动并与其他细胞器建立联系的机制。当营养缺乏时,脂滴会发生分解(脂解),这始于脂滴相关的围脂滴蛋白家族成员PLIN2和PLIN3的伴侣介导的自噬降解(CMA),这是一种自噬的特殊类型,可选择性地在溶酶体中降解一部分胞质蛋白。实际上,PLINs的CMA降解是进一步真正脂解的先决条件,真正的脂解通过胞质脂肪酶发生,或者当自噬体吞噬部分脂滴并将其靶向溶酶体时,由溶酶体腔脂肪酶发生。脂滴在多个病理生理过程中起关键作用。在包括病毒、细菌和寄生虫感染在内的细胞内病原体引起的多种传染病中,通常会观察到非脂肪细胞中脂滴积累增加,并且脂滴积累逐渐被认为是多种癌症的一个显著特征。本综述讨论了与细胞内病原体和癌症引起的脂滴生物发生和分解调节相关的现有证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8d8/8860030/ee59ce9bb4f3/fcell-09-826248-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验