Suppr超能文献

NMDA 受体需要多个预开放门控步骤才能实现有效的突触活动。

NMDA Receptors Require Multiple Pre-opening Gating Steps for Efficient Synaptic Activity.

机构信息

Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794-5230, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794-5230, USA.

Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA.

出版信息

Neuron. 2021 Feb 3;109(3):488-501.e4. doi: 10.1016/j.neuron.2020.11.009. Epub 2020 Dec 1.

Abstract

NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate fast excitatory synaptic transmission in the nervous system. Applying glutamate to outside-out patches containing a single NMDAR, we find that agonist-bound receptors transition to the open state via two conformations, an "unconstrained pre-active" state that contributes to fast synaptic events and a "constrained pre-active" state that does not. To define how glutamate drives these conformations, we decoupled the ligand-binding domains from specific transmembrane segments for GluN1 and GluN2A. Displacements of the pore-forming M3 segments define the energy of fast opening. However, to enter the unconstrained conformation and contribute to fast signaling, the GluN2 pre-M1 helix must be displaced before the M3 segments move. This pre-M1 displacement is facilitated by the flexibility of the S2-M4 of GluN1 and GluN2A. Thus, outer structures-pre-M1 and S2-M4-work in concert to remove constraints and prime the channel for rapid opening, facilitating fast synaptic transmission.

摘要

N-甲基-D-天冬氨酸受体(NMDARs)是谷氨酸门控离子通道,在神经系统中介导快速兴奋性突触传递。将谷氨酸施加于包含单个 NMDAR 的胞外小片中,我们发现激动剂结合的受体通过两种构象转变为开放状态,一种是有助于快速突触事件的“无约束前活跃”状态,另一种是不活跃的“约束前活跃”状态。为了确定谷氨酸如何驱动这些构象,我们将 GluN1 和 GluN2A 的配体结合域与特定的跨膜片段分离。孔形成 M3 片段的位移定义了快速打开的能量。然而,为了进入无约束构象并有助于快速信号转导,在 M3 片段移动之前,必须先移动 GluN2 的前 M1 螺旋。这种前 M1 位移是由 GluN1 和 GluN2A 的 S2-M4 的灵活性促进的。因此,外部结构-前 M1 和 S2-M4-协同工作以消除约束,为快速开放做好准备,促进快速突触传递。

相似文献

6
Asynchronous movements prior to pore opening in NMDA receptors.NMDA 受体孔开放前的异步运动。
J Neurosci. 2013 Jul 17;33(29):12052-66. doi: 10.1523/JNEUROSCI.5780-12.2013.

引用本文的文献

3
Membrane Association of Intrinsically Disordered Proteins.内在无序蛋白质的膜结合
Annu Rev Biophys. 2025 May;54(1):275-302. doi: 10.1146/annurev-biophys-070124-092816. Epub 2025 Feb 14.
5
Subtype-specific conformational landscape of NMDA receptor gating.NMDA 受体门控的亚型特异性构象景观。
Cell Rep. 2024 Aug 27;43(8):114634. doi: 10.1016/j.celrep.2024.114634. Epub 2024 Aug 17.
7
Calcium- and calmodulin-dependent inhibition of NMDA receptor currents.钙和钙调蛋白依赖性 NMDA 受体电流的抑制。
Biophys J. 2024 Feb 6;123(3):277-293. doi: 10.1016/j.bpj.2023.12.018. Epub 2023 Dec 22.
10
Complex functional phenotypes of NMDA receptor disease variants.NMDA 受体病变体的复杂功能表型。
Mol Psychiatry. 2022 Dec;27(12):5113-5123. doi: 10.1038/s41380-022-01774-6. Epub 2022 Sep 18.

本文引用的文献

1
Structural Basis of Functional Transitions in Mammalian NMDA Receptors.哺乳动物 NMDA 受体功能转变的结构基础。
Cell. 2020 Jul 23;182(2):357-371.e13. doi: 10.1016/j.cell.2020.05.052. Epub 2020 Jun 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验