Suppr超能文献

Radiomics 是如何实际运作的?——综述

How does Radiomics actually work? - Review.

机构信息

Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Bonn, Germany.

Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Wien, Austria.

出版信息

Rofo. 2021 Jun;193(6):652-657. doi: 10.1055/a-1293-8953. Epub 2020 Dec 2.

Abstract

Personalized precision medicine requires highly accurate diagnostics. While radiological research has focused on scanner and sequence technologies in recent decades, applications of artificial intelligence are increasingly attracting scientific interest as they could substantially expand the possibility of objective quantification and diagnostic or prognostic use of image information.In this context, the term "radiomics" describes the extraction of quantitative features from imaging data such as those obtained from computed tomography or magnetic resonance imaging examinations. These features are associated with predictive goals such as diagnosis or prognosis using machine learning models. It is believed that the integrative assessment of the feature patterns thus obtained, in combination with clinical, molecular and genetic data, can enable a more accurate characterization of the pathophysiology of diseases and more precise prediction of therapy response and outcome.This review describes the classical radiomics approach and discusses the existing very large variability of approaches. Finally, it outlines the research directions in which the interdisciplinary field of radiology and computer science is moving, characterized by increasingly close collaborations and the need for new educational concepts. The aim is to provide a basis for responsible and comprehensible handling of the data and analytical methods used. KEY POINTS::   · Radiomics is playing an increasingly important role in imaging research.. · Radiomics has great potential to meet the requirements of precision medicine.. · Radiomics analysis is still subject to great variability.. · There is a need for quality-assured application of radiomics in medicine.. CITATION FORMAT: · Attenberger UI, Langs G, . How does Radiomics actually work? - Review. Fortschr Röntgenstr 2021; 193: 652 - 657.

摘要

个性化精准医学需要高度精确的诊断。虽然放射学研究在过去几十年中一直专注于扫描仪和序列技术,但人工智能的应用越来越引起科学界的兴趣,因为它们可以大大扩展客观量化的可能性,以及图像信息的诊断或预后应用。在这种情况下,术语“放射组学”描述了从成像数据中提取定量特征,例如从计算机断层扫描或磁共振成像检查中获得的数据。这些特征与预测目标相关,例如使用机器学习模型进行诊断或预后。人们相信,对因此获得的特征模式进行综合评估,结合临床、分子和遗传数据,可以更准确地描述疾病的病理生理学,并更精确地预测治疗反应和结果。这篇综述描述了经典的放射组学方法,并讨论了现有的方法非常大的可变性。最后,它概述了放射学和计算机科学这一跨学科领域正在发展的研究方向,其特点是合作越来越密切,需要新的教育理念。目的是为负责任和可理解地处理所使用的数据和分析方法提供基础。 要点: · 放射组学在成像研究中发挥着越来越重要的作用。 · 放射组学具有满足精准医学要求的巨大潜力。 · 放射组学分析仍然存在很大的可变性。 · 需要在医学中确保放射组学的应用质量。 引文格式: · Attenberger UI, Langs G,. How does Radiomics actually work? - Review. Fortschr Röntgenstr 2021; 193: 652 - 657.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验