Meden Blaž, Emeršič Žiga, Štruc Vitomir, Peer Peter
Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia.
Entropy (Basel). 2018 Jan 13;20(1):60. doi: 10.3390/e20010060.
Image and video data are today being shared between government entities and other relevant stakeholders on a regular basis and require careful handling of the personal information contained therein. A popular approach to ensure privacy protection in such data is the use of deidentification techniques, which aim at concealing the identity of individuals in the imagery while still preserving certain aspects of the data after deidentification. In this work, we propose a novel approach towards face deidentification, called -Same-Net, which combines recent Generative Neural Networks (GNNs) with the well-known -Anonymitymechanism and provides formal guarantees regarding privacy protection on a closed set of identities. Our GNN is able to generate synthetic surrogate face images for deidentification by seamlessly combining features of identities used to train the GNN model. Furthermore, it allows us to control the image-generation process with a small set of appearance-related parameters that can be used to alter specific aspects (e.g., facial expressions, age, gender) of the synthesized surrogate images. We demonstrate the feasibility of -Same-Net in comprehensive experiments on the XM2VTS and CK+ datasets. We evaluate the efficacy of the proposed approach through reidentification experiments with recent recognition models and compare our results with competing deidentification techniques from the literature. We also present facial expression recognition experiments to demonstrate the utility-preservation capabilities of -Same-Net. Our experimental results suggest that -Same-Net is a viable option for facial deidentification that exhibits several desirable characteristics when compared to existing solutions in this area.
如今,图像和视频数据在政府实体与其他相关利益攸关方之间定期共享,这就需要谨慎处理其中包含的个人信息。在这类数据中确保隐私保护的一种常用方法是使用去识别技术,其目的是在图像中隐藏个人身份,同时在去识别后仍保留数据的某些方面。在这项工作中,我们提出了一种新的面部去识别方法,称为-Same-Net,它将最近的生成神经网络(GNN)与著名的-匿名机制相结合,并在一组封闭的身份上提供有关隐私保护的形式保证。我们的GNN能够通过无缝组合用于训练GNN模型的身份特征来生成用于去识别的合成替代面部图像。此外,它使我们能够用一小套与外观相关的参数来控制图像生成过程,这些参数可用于改变合成替代图像的特定方面(例如面部表情、年龄、性别)。我们在XM2VTS和CK+数据集上的综合实验中证明了-Same-Net的可行性。我们通过与最近的识别模型进行再识别实验来评估所提出方法的有效性,并将我们的结果与文献中竞争的去识别技术进行比较。我们还展示了面部表情识别实验,以证明-Same-Net的效用保留能力。我们的实验结果表明,-Same-Net是面部去识别的一个可行选择,与该领域的现有解决方案相比,它具有几个理想的特性。