Suppr超能文献

基于信息论的深度神经网络方法在诊断精神性非癫痫性发作中的解释

Information Theoretic-Based Interpretation of a Deep Neural Network Approach in Diagnosing Psychogenic Non-Epileptic Seizures.

作者信息

Gasparini Sara, Campolo Maurizio, Ieracitano Cosimo, Mammone Nadia, Ferlazzo Edoardo, Sueri Chiara, Tripodi Giovanbattista Gaspare, Aguglia Umberto, Morabito Francesco Carlo

机构信息

Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy.

Regional Epilepsy Centre, Bianchi-Melacrino-Morelli Hospital, 89124 Reggio Calabria, Italy.

出版信息

Entropy (Basel). 2018 Jan 23;20(2):43. doi: 10.3390/e20020043.

Abstract

The use of a deep neural network scheme is proposed to help clinicians solve a difficult diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering step (from time-frequency transformation), a double compressing stage trained by unsupervised learning, and a classification stage trained by supervised learning. After fine-tuning, the deep network is able to discriminate well the class of patients from controls with around 90% sensitivity and specificity. This deep model gives better classification performance than some other standard discriminative learning algorithms. As in clinical problems there is a need for explaining decisions, an effort has been carried out to qualitatively justify the classification results. The main novelty of this paper is indeed to give an entropic interpretation of how the deep scheme works and reach the final decision.

摘要

提出使用深度神经网络方案来帮助临床医生解决神经学中一个困难的诊断问题。所提出的多层架构包括一个特征工程步骤(来自时频变换)、一个通过无监督学习训练的双重压缩阶段以及一个通过监督学习训练的分类阶段。经过微调后,深度网络能够以约90%的灵敏度和特异性很好地区分患者类别与对照组。这个深度模型比其他一些标准判别学习算法具有更好的分类性能。由于在临床问题中需要解释决策,因此已努力从定性角度证明分类结果的合理性。本文的主要新颖之处确实在于对深度方案如何工作并达成最终决策给出熵的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8de/7512641/f1c435f4685a/entropy-20-00043-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验