Suppr超能文献

基于机器学习的 EEG 信号分类综合软件流水线:PNES 与对照受试者案例研究。

A Comprehensive Machine-Learning-Based Software Pipeline to Classify EEG Signals: A Case Study on PNES vs. Control Subjects.

机构信息

Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.

Regional Epilepsy Centre, Great Metropolitan Hospital, 89100 Reggio Calabria, Italy.

出版信息

Sensors (Basel). 2020 Feb 24;20(4):1235. doi: 10.3390/s20041235.

Abstract

The diagnosis of psychogenic nonepileptic seizures (PNES) by means of electroencephalography (EEG) is not a trivial task during clinical practice for neurologists. No clear PNES electrophysiological biomarker has yet been found, and the only tool available for diagnosis is video EEG monitoring with recording of a typical episode and clinical history of the subject. In this paper, a data-driven machine learning (ML) pipeline for classifying EEG segments (i.e., epochs) of PNES and healthy controls (CNT) is introduced. This software pipeline consists of a semiautomatic signal processing technique and a supervised ML classifier to aid clinical discriminative diagnosis of PNES by means of an EEG time series. In our ML pipeline, statistical features like the mean, standard deviation, kurtosis, and skewness are extracted in a power spectral density (PSD) map split up in five conventional EEG rhythms (delta, theta, alpha, beta, and the whole band, i.e., 1-32 Hz). Then, the feature vector is fed into three different supervised ML algorithms, namely, the support vector machine (SVM), linear discriminant analysis (LDA), and Bayesian network (BN), to perform EEG segment classification tasks for CNT vs. PNES. The performance of the pipeline algorithm was evaluated on a dataset of 20 EEG signals (10 PNES and 10 CNT) that was recorded in eyes-closed resting condition at the Regional Epilepsy Centre, Great Metropolitan Hospital of Reggio Calabria, University of Catanzaro, Italy. The experimental results showed that PNES vs. CNT discrimination tasks performed via the ML algorithm and validated with random split (RS) achieved an average accuracy of 0.97 ± 0.013 (RS-SVM), 0.99 ± 0.02 (RS-LDA), and 0.82 ± 0.109 (RS-BN). Meanwhile, with leave-one-out (LOO) validation, an average accuracy of 0.98 ± 0.0233 (LOO-SVM), 0.98 ± 0.124 (LOO-LDA), and 0.81 ± 0.109 (LOO-BN) was achieved. Our findings showed that BN was outperformed by SVM and LDA. The promising results of the proposed software pipeline suggest that it may be a valuable tool to support existing clinical diagnosis.

摘要

神经病学家在临床实践中通过脑电图(EEG)诊断心因性非癫痫性发作(PNES)并非易事。目前尚未发现明确的 PNES 电生理生物标志物,诊断唯一可用的工具是视频脑电图监测,记录典型发作和受试者的临床病史。本文介绍了一种用于对 PNES 和健康对照(CNT)的 EEG 段(即脑电时段)进行分类的基于数据驱动的机器学习(ML)管道。该软件管道由半自动化信号处理技术和监督式 ML 分类器组成,用于通过 EEG 时间序列辅助 PNES 的临床鉴别诊断。在我们的 ML 管道中,在按五个常规 EEG 节律(δ、θ、α、β 和整个频段,即 1-32 Hz)划分的功率谱密度(PSD)图中提取均值、标准差、峰度和偏度等统计特征。然后,将特征向量输入到三个不同的监督式 ML 算法中,即支持向量机(SVM)、线性判别分析(LDA)和贝叶斯网络(BN),以执行 CNT 与 PNES 的 EEG 段分类任务。该管道算法的性能在意大利雷焦卡拉布里亚大区癫痫中心、卡坦扎罗大学大都会医院记录的 20 个 EEG 信号(10 个 PNES 和 10 个 CNT)的数据集上进行了评估,这些信号是在闭眼静息状态下记录的。实验结果表明,通过 ML 算法并结合随机分割(RS)验证的 PNES 与 CNT 区分任务的平均准确率为 0.97 ± 0.013(RS-SVM)、0.99 ± 0.02(RS-LDA)和 0.82 ± 0.109(RS-BN)。而在留一法(LOO)验证中,平均准确率为 0.98 ± 0.0233(LOO-SVM)、0.98 ± 0.124(LOO-LDA)和 0.81 ± 0.109(LOO-BN)。我们的研究结果表明,BN 逊于 SVM 和 LDA。该软件管道的有前途的结果表明,它可能是支持现有临床诊断的有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c356/7071461/830c1762c7ea/sensors-20-01235-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验