Bergamasco Luca, Alberghini Matteo, Fasano Matteo, Cardellini Annalisa, Chiavazzo Eliodoro, Asinari Pietro
Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
Entropy (Basel). 2018 Feb 15;20(2):126. doi: 10.3390/e20020126.
In this work, we derive different systems of mesoscopic moment equations for the heat-conduction problem and analyze the basic features that they must hold. We discuss two- and three-equation systems, showing that the resulting mesoscopic equation from two-equation systems is of the telegraphist's type and complies with the Cattaneo equation in the Extended Irreversible Thermodynamics Framework. The solution of the proposed systems is analyzed, and it is shown that it accounts for two modes: a slow diffusive mode, and a fast advective mode. This latter additional mode makes them suitable for heat transfer phenomena on fast time-scales, such as high-frequency pulses and heat transfer in small-scale devices. We finally show that, if proper initial conditions are provided, the advective mode disappears, and the solution of the system tends asymptotically to the transient solution of the classical parabolic heat-conduction equation.
在这项工作中,我们推导了用于热传导问题的不同介观矩方程组,并分析了它们必须具备的基本特征。我们讨论了两方程和三方程系统,表明两方程系统产生的介观方程属于电报员类型,并且在扩展不可逆热力学框架内符合卡塔尼奥方程。对所提出系统的解进行了分析,结果表明它包含两种模式:一种缓慢的扩散模式和一种快速的平流模式。后一种额外模式使它们适用于快速时间尺度上的热传递现象,例如高频脉冲和小尺度设备中的热传递。我们最终表明,如果提供适当的初始条件,平流模式会消失,并且系统的解会渐近地趋向于经典抛物型热传导方程的瞬态解。