Quint Makiko T, Sarang Som, Quint David A, Keshavarz Amir, Stokes Benjamin J, Subramaniam Anand Bala, Huang Kerwyn Casey, Gopinathan Ajay, Hirst Linda S, Ghosh Sayantani
School of Natural Sciences, University of California, Merced, CA, 95344, USA.
Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
Sci Rep. 2017 Dec 19;7(1):17788. doi: 10.1038/s41598-017-17691-6.
We present three-dimensional microshells formed by self-assembly of densely-packed 5 nm gold nanoparticles (AuNPs). Surface functionalization of the AuNPs with custom-designed mesogenic molecules drives the formation of a stable and rigid shell wall, and these unique structures allow encapsulation of cargo that can be contained, virtually leakage-free, over several months. Further, by leveraging the plasmonic response of AuNPs, we can rupture the microshells using optical excitation with ultralow power (<2 mW), controllably and rapidly releasing the encapsulated contents in less than 5 s. The optimal AuNP packing in the wall, moderated by the custom ligands and verified using small angle x-ray spectroscopy, allows us to calculate the heat released in this process, and to simulate the temperature increase originating from the photothermal heating, with great accuracy. Atypically, we find the local heating does not cause a rise of more than 50 °C, which addresses a major shortcoming in plasmon actuated cargo delivery systems. This combination of spectral selectivity, low power requirements, low heat production, and fast release times, along with the versatility in terms of identity of the enclosed cargo, makes these hierarchical microshells suitable for wide-ranging applications, including biological ones.
我们展示了由密集堆积的5纳米金纳米颗粒(AuNP)自组装形成的三维微壳。用定制设计的介晶分子对AuNP进行表面功能化驱动形成稳定且刚性的壳壁,并且这些独特结构允许封装货物,这些货物能够在数月内几乎无泄漏地被容纳。此外,通过利用AuNP的等离子体响应,我们可以使用超低功率(<2毫瓦)的光激发来破裂微壳,在不到5秒的时间内可控且快速地释放封装的内容物。通过定制配体调节并使用小角x射线光谱验证的壁中最佳AuNP堆积,使我们能够高精度地计算此过程中释放的热量,并模拟源自光热加热的温度升高。非典型地,我们发现局部加热不会导致温度升高超过50°C,这解决了等离子体驱动的货物递送系统中的一个主要缺点。这种光谱选择性、低功率要求、低热量产生、快速释放时间以及所封装货物身份方面的多功能性的组合,使得这些分级微壳适用于广泛的应用,包括生物应用。