Suppr超能文献

迈向检验原始贝尔不等式违背情况的实验。

Towards Experiments to Test Violation of the Original Bell Inequality.

作者信息

Khrennikov Andrei, Basieva Irina

机构信息

International Center for Mathematical Modeling in Physics, Engineering, Economics, and Cognitive Science, Linnaeus University, 351 95 Växjö, Sweden.

Prokhorov General Physics Institute, Vavilov str. 38D, 119991 Moscow, Russia.

出版信息

Entropy (Basel). 2018 Apr 13;20(4):280. doi: 10.3390/e20040280.

Abstract

The aim of this paper is to attract the attention of experimenters to the original Bell (OB) inequality that was shadowed by the common consideration of the Clauser-Horne-Shimony-Holt (CHSH) inequality. There are two reasons to test the OB inequality and not the CHSH inequality. First of all, the OB inequality is a straightforward consequence to the Einstein-Podolsky-Rosen (EPR) argumentation. In addition, only this inequality is directly related to the EPR-Bohr debate. The second distinguishing feature of the OB inequality was emphasized by Itamar Pitowsky. He pointed out that the OB inequality provides a higher degree of violations of classicality than the CHSH inequality. For the CHSH inequality, the fraction of the quantum (Tsirelson) bound Q CHSH = 2 2 to the classical bound C CHSH = 2 , i.e., F CHSH = Q CHSH C CHSH = 2 is less than the fraction of the quantum bound for the OB inequality Q OB = 3 2 to the classical bound C OB = 1 , i.e., F OB = Q OB C OB = 3 2 . Thus, by violating the OB inequality, it is possible to approach a higher degree of deviation from classicality. The main problem is that the OB inequality is derived under the assumption of perfect (anti-) correlations. However, the last few years have been characterized by the amazing development of quantum technologies. Nowadays, there exist sources producing, with very high probability, the pairs of photons in the singlet state. Moreover, the efficiency of photon detectors was improved tremendously. In any event, one can start by proceeding with the fair sampling assumption. Another possibility is to use the scheme of the Hensen et al. experiment for entangled electrons. Here, the detection efficiency is very high.

摘要

本文的目的是吸引实验者关注被克劳泽 - 霍恩 - 希莫尼 - 霍尔特(CHSH)不等式的普遍讨论所掩盖的原始贝尔(OB)不等式。有两个理由去检验OB不等式而非CHSH不等式。首先,OB不等式是爱因斯坦 - 波多尔斯基 - 罗森(EPR)论证的直接结果。此外,只有这个不等式与EPR - 玻尔辩论直接相关。伊塔马尔·皮托夫斯基强调了OB不等式的第二个显著特征。他指出,与CHSH不等式相比,OB不等式对经典性的违背程度更高。对于CHSH不等式,量子(齐雷尔森)界限Q_CHSH = 2√2与经典界限C_CHSH = 2的比值,即F_CHSH = Q_CHSH / C_CHSH = √2小于OB不等式的量子界限Q_OB = 3√2与经典界限C_OB = 1的比值,即F_OB = Q_OB / C_OB = 3√2。因此,通过违背OB不等式,可以更接近更高程度的与经典性的偏离。主要问题在于OB不等式是在完美(反)关联的假设下推导出来的。然而,过去几年量子技术取得了惊人的发展。如今,可以以非常高的概率产生处于单重态光子对的源已经存在了。此外,光子探测器的效率也得到了极大提高。无论如何,可以从公平采样假设开始着手处理问题。另一种可能性是使用亨森等人关于纠缠电子的实验方案。在此方案中,探测效率非常高。

相似文献

1
Towards Experiments to Test Violation of the Original Bell Inequality.
Entropy (Basel). 2018 Apr 13;20(4):280. doi: 10.3390/e20040280.
2
All bipartite entangled States display some hidden nonlocality.
Phys Rev Lett. 2008 Mar 7;100(9):090403. doi: 10.1103/PhysRevLett.100.090403. Epub 2008 Mar 4.
3
Violating Bell's inequality beyond Cirel'son's bound.
Phys Rev Lett. 2002 Feb 11;88(6):060403. doi: 10.1103/PhysRevLett.88.060403. Epub 2002 Jan 29.
4
Bright-light detector control emulates the local bounds of Bell-type inequalities.
Sci Rep. 2020 Aug 6;10(1):13205. doi: 10.1038/s41598-020-70045-7.
5
Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality.
Sci Rep. 2017 May 10;7(1):1700. doi: 10.1038/s41598-017-01509-6.
6
Study of quantum nonlocality by CHSH function and its extension in disordered fermions.
J Phys Condens Matter. 2024 Sep 27;36(50). doi: 10.1088/1361-648X/ad7cb4.
7
Violating Bell inequality using weak coherent states.
Opt Lett. 2021 Dec 1;46(23):5998-6001. doi: 10.1364/OL.441499.
8
Violation of Bell's inequality in Josephson phase qubits.
Nature. 2009 Sep 24;461(7263):504-6. doi: 10.1038/nature08363.
9
Activation of nonlocal quantum resources.
Phys Rev Lett. 2011 Feb 11;106(6):060403. doi: 10.1103/PhysRevLett.106.060403.
10
Analytic and Nearly Optimal Self-Testing Bounds for the Clauser-Horne-Shimony-Holt and Mermin Inequalities.
Phys Rev Lett. 2016 Aug 12;117(7):070402. doi: 10.1103/PhysRevLett.117.070402. Epub 2016 Aug 11.

本文引用的文献

1
Strong Loophole-Free Test of Local Realism.
Phys Rev Lett. 2015 Dec 18;115(25):250402. doi: 10.1103/PhysRevLett.115.250402. Epub 2015 Dec 16.
2
Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons.
Phys Rev Lett. 2015 Dec 18;115(25):250401. doi: 10.1103/PhysRevLett.115.250401. Epub 2015 Dec 16.
3
Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres.
Nature. 2015 Oct 29;526(7575):682-6. doi: 10.1038/nature15759. Epub 2015 Oct 21.
4
Detection-loophole-free test of quantum nonlocality, and applications.
Phys Rev Lett. 2013 Sep 27;111(13):130406. doi: 10.1103/PhysRevLett.111.130406. Epub 2013 Sep 26.
5
Bell violation using entangled photons without the fair-sampling assumption.
Nature. 2013 May 9;497(7448):227-30. doi: 10.1038/nature12012. Epub 2013 Apr 14.
6
Superactivation of quantum nonlocality.
Phys Rev Lett. 2012 Nov 9;109(19):190401. doi: 10.1103/PhysRevLett.109.190401. Epub 2012 Nov 5.
7
Experimental violation of a Bell's inequality with efficient detection.
Nature. 2001 Feb 15;409(6822):791-4. doi: 10.1038/35057215.
8
Detector inefficiencies in the Einstein-Podolsky-Rosen experiment.
Phys Rev D Part Fields. 1987 Jun 15;35(12):3831-3835. doi: 10.1103/physrevd.35.3831.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验