Biró Tamás Sándor
Wigner Research Centre for Physics, 1121 Budapest, Hungary.
Institute for Physics, University Babeş-Bolyai, 400294 Cluj, Romania.
Entropy (Basel). 2022 Dec 3;24(12):1769. doi: 10.3390/e24121769.
Mathematical generalizations of the additive Boltzmann-Gibbs-Shannon entropy formula have been numerous since the 1960s. In this paper we seek an interpretation of the Rényi and Tsallis q-entropy formulas single parameter in terms of physical properties of a finite capacity heat-bath and fluctuations of temperature. Ideal gases of non-interacting particles are used as a demonstrating example.
自20世纪60年代以来,加法形式的玻尔兹曼-吉布斯-香农熵公式的数学推广层出不穷。在本文中,我们试图根据有限容量热库的物理性质和温度涨落,对单参数的雷尼熵公式和Tsallis q熵公式作出解释。以非相互作用粒子的理想气体作为示例进行说明。